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Preface

CNC controllers, working as a brain for manufacturing automation, are high value-
added products accounting for over 30% of the price of machine tools. CNC technol-
ogy is generally considered as a measure of the level of manufacturing technology of
a nation, and is currently led by major advanced countries such as USA, Japan, and
Germany. CNC technology, which cannot be developed with one single technology
but needs to integrate computer technology, hardware technology, machining tech-
nology, and so on, is often referred to as “The Flower of Industrial Technology”, and
requires a strategic long-term support, mostly on a governmental level.

Despite its significant role, textbooks on CNC controllers are quite rare world-
wide, with a few published in the 1970s and some later. However, the earlier ones
mostly deal with conventional technologies, while the later ones deal with fragmental
contents, mostly focusing on part programming and machine operation. This book
is written by several authors in collaboration who have long experience in CNC de-
velopment, education, and research, and is designed as a highly focused textbook
to provide knowledge on the principles and development technologies of CNC con-
trollers. Therefore, this book can be used as a main textbook for courses related to
CNC in such departments as mechanical engineering, precision engineering and con-
trol engineering, and as a guide for those working on CNC development in industry.
If highly descriptive portions are taken out, it can also be used as lecture material in
technical colleges.

The framework of industrial CNC controllers has been established by integrat-
ing the structure and element technologies of CNC controllers under research and
development by the authors in their respective field of industry and academia over
the years. Furthermore, this book intends to encourage the spirit of development by
introducing actual realization cases.

This book is composed of two parts with a total of 11 chapters: Part I is composed
of Chapters 1–6 on the principle and design of CNC, and Part II is composed of an
open-architectural soft CNC system. Specifically, Chapter 1 provides general con-
cepts and mechanisms of numerically controlled machines, while Chapters 2 through
5 cover the element technologies of NCK in charge of controlling the transfer axis,
including interpreter, interpolator, control of acceleration and deceleration, and po-
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sition control system. In Chapter 6, NCK development cases are described together
with source code. Therefore, those who are interested in motion controllers can de-
velop independent control devices by referring to the contents of Chapters 2 through
6.

Part II describes the open-architectural soft CNC system, including the principles
of major modules of numerically controlled machines, except the NCK (dealt with in
Part 1), and the system design process for the composition of the overall system from
the perspective of open-architectural soft CNC systems. Specifically, Chapter 7 ex-
plains the PLC, controlling most mechanical motions except the transfer axis, while
Chapter 8 presents the principles of the Man-Machine Interface (MMI) and the ma-
jor modules for the development of conversational programming methods. Real-time
operation concepts and methods necessary for designing real-time controllers are de-
scribed in Chapter 9, Chapter 10 describes the architecture design of CNC systems
based on personal computers. This is discussed from the perspective of soft CNC,
including several approaches to the architecture of open-style CNC system with free
external interfaces, and the design process of those approaches. The concept and pri-
mary elements of STEP-NC are introduced in Chapter 11, which has recently come
under the spotlight as a method of realizing intelligent CNC machines. Therefore,
those who are interested in designing and realizing open-style soft CNC devices can
refer to the topics covered in Chapters 7 through 11 to materialize intelligent open-
style NC devices.

As authors of this book, we recommend that instructors have their students ac-
tually code the NCK technologies (Chapters 2 through 5), which are the core ele-
ments, and finish a computer simulation system, one similar to the development case
covered in Chapter 6, and verify the performance. One step further, if the interface
board (encoder signal and PLC signal processing) and the XY-table can actually be
connected by the students, the effect of learning can be doubled.

Those students who want to learn the general technologies related with CNC sys-
tems can achieve their goals by studying the PLC, conversational programming sys-
tem, particularly actual cases of system programming methods to realize soft CNC,
as covered in Part 2, Chapters 7 through 11.

To complete this book it took over three years to collect and organize all sorts of
material accumulated over a period of many years, including technical papers and
patent data materials. However, we feel there are many shortcomings. Some of the
excuses we can offer could include the fact that CNC technology has been developed
by industry itself and that each element technology derives from a completely dif-
ferent domain of knowledge. Therefore, for integrating them under the umbrella of
CNC for academic purposes, many problems are posed such as un- or mis-defined
technical terminologies and lack of systematic knowledge bases. However, despite
this, the authors decided to publish this book in the hope that it will contribute to the
advancement of CNC technology both at home and abroad, in consideration of the
sheer reality that no proper textbooks are available for education or training in CNC
technology. With lots of input from the readers, we hope this book can improve its
contents in the future.
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Chapter 1
Introduction to NC Systems

NC machines, being typical mechatronics products, comprise machine tools that
have a mechanical component and a numerical control system that is an electrical
component. In this chapter, the history, the constituent units, the functions, and future
directions of NC systems, being the intelligence of NC machines, will be addressed.
Through studying this chapter, you will obtain a comprehensive understanding and
fundamental knowledge about NC systems.

1.1 Introduction

The machine tool is called “mother machine” in the sense that it is a machine that
makes machines. In particular, as machine tools have advanced from manual machine
tools to NC machines, these have become perfect in the role of mother machines with
the improvement of accuracy and machining speed.

NC machine tools can be classified as “cutting machines” and “non-cutting ma-
chines”. A cutting machine means a machine that performs a removal process to
make a finished part; milling machines, turning machines and EDM machines being
good examples. Non-cutting machine tools change the shape of the blank material by
applying force and press machines are good examples of this. In addition, robot sys-
tems (Fig. 1.1a) for welding, cutting, and painting can be included in a broad sense.

When NC machines were developed, the purpose of the NC machine was to ma-
chine parts with complex shape in a precise manner. Therefore, the numerical con-
troller was primarily applied to milling machines (Fig. 1.1b) and boring machines.
However, recently it has become popular to apply NC for increased productivity and
the kinds of machine with NC have been varied to include machines such as turning
machines (Fig. 1.1c), machining centers (Fig. 1.1d), and drill/tapping machines. Par-
ticularly, the application of NC has extended to non-conventional machine tools such
as wire electro-discharge machines (Fig. 1.1e) and laser cutting machines in addition
to conventional metal-cutting machines.
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4 1 Introduction to NC Systems

Also, as factory automation has progressed, NC machine technology has also pro-
gressed to allow construction of Flexible Automation (FA) or Flexible Manufacturing
Systems (FMS) (Fig. 1.1f) by connecting machines with production equipment such
as robots, Autonomous Guided Vehicles (AGV), automated warehouses and comput-
ers. NC systems are used not only for machine tools but also all machines that need
motion controlled by servo systems, such as cutting machines, drawing instruments,
woodworking machines, Coordinate Measurement Machines (CMM) and embroi-
dering machines and NC is the fundamental technology for factory automation.

The task flow that is needed for producing a part using an NC machine can be
summarized as Fig. 1.2. The tasks can be classified as the following three types:

1. Offline tasks: CAD, CAPP, CAM
2. Online tasks: NC machining, monitoring and On-Machine Measurement.
3. Post-line tasks: Computer-Aided Inspection (CAI), post-operation

Offline tasks are the tasks that are needed to generate a part program for control-
ling an NC machine. In the offline stage, after the shape of a part has been decided,
a geometry model of this part is created by 2D or 3D CAD. In general, CAD means
Computer Aided Design but CAD in this book is regarded as a modeling stage in
which both design and analysis are included because engineering analysis of a part
cannot be carried out on the shopfloor.

After finishing geometric modeling, Computer Aided Process Planning, CAPP, is
carried out where necessary information for machining is generated. In this stage, the
selection of machine tools, tools, jig and fixture, decisions about cutting conditions,
scheduling and machining sequences are created. Because process planning is very
complicated and CAPP is immature with respect to technology, process planning
generally depends on the know-how of a process planner.

CAM (Computer Aided Manufacturing) is executed in the final stage for gen-
erating a part program. In this stage, tool paths are generated based on geometry
information from CAD and machining information from CAPP. During tool path
generation, interferences between tool and workpiece, minimization of machining
time and tool change, and machine performance are considered. In particular, CAM
is an essential tool to generate 2.5D or 3D toolpaths for machine tools with more
than three axes.

Online tasks are those that are needed to machine parts using NC machines. A
part program, being the machine-understandable instructions, can be generated in
the above-mentioned offline stage and part programs for a simple part can be di-
rectly edited in NC by the user. In this stage, the NC system reads and interprets part
programs from memory and controls the movement of axes. The NC system gen-
erates instructions for position and velocity control based on the part program and
servo motors are controlled based on the instructions generated. As the rotation of
a servo motor is transformed into linear movement via ball-screw mechanisms, the
workpiece or tool is moved and, finally, the part is machined by these movements.

To increase the machining accuracy, not only the accuracy of the servo motor,
table guide, ball screw and spindle but also the rigidity of the machine construc-
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tion should be high. The construction of the machine and the machine components
should also be designed to be insensitive to vibration and temperature. In addition,
the performance of the encoder and sensors that are included in the NC system and
the control mechanism influences the machining accuracy. The control mechanism
will be addressed in more detail in the following section.

In the online stage, the status of the machine and machining process may be mon-
itored during machining. Actually, tool-breakage detection, compensation of thermal
deformation, adaptive control, and compensation of tool deflection based on moni-
toring of cutting force, heat, and electric current are applied during machining. On-
Machine Measurement is also used to calculate machining error by inspecting the
finished part on the machine, returning machining errors to NC to carry out compen-
sation.

The post-line task is to carry out CAI (Computer Aided Inspection), inspecting
the finished part. In this stage, inspection using a CMM (Coordinate Measurement
Machine) is used to make a comparison between the result and the geometry model
in order to perform compensation. The compensation is executed by modifying tool
compensation or by doing post-operations such as re-machining and grinding. Re-
verse engineering, meaning that the shape of the part is measured and a geometric
model based on the measured data is generated, is included in this stage.

As mentioned above, through three stages, it is possible for machine tools not
only to satisfy high accuracy and productivity but also to machine parts with complex
shape as well as simple shapes. Because NC machines can machine a variety of parts
by changing the part program and repetitively machine the same part shape by storing
part programs, NC machines can be used for general purposes.

In this book, the functionalities and the components of NC in the online stage
will mainly be addressed. However, considering that part of the CAM function has
recently been included in the online stage, WOP (Workshop Oriented Programming)
or SFP (Shop Floor Programming), which are types of online CAM systems, will be
described in detail.

1.2 The History of NC and NC Machine Tools

As mentioned in the previous section, the NC is the system that enables machine
tools to machine parts with various shapes rapidly and precisely. In NC, the servo
motor is used for controlling the machine tool according to the operation of a user
and a servo motor drive mechanism for activating the servo motor. That is, NC means
a control device that machines a target part by activating the servo motor according to
commands. The NC combined with computer technology is called computerized NC
or CNC (Computer Numerical Control). An NC machine which consists of vacuum
tubes, transistors, circuits, logic elements such as large-scale integrated circuits (LSI)
is called “Hardwired NC”, and performs NC functions through connecting elements
by electrical wiring. Instead of elements and circuits, NC functions are implemented
based on software in CNC. That is, this change from hardwired NC to CNC was
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Fig. 1.2 The architecture of NC machine tools and machining operation flow

driven by the advance in capacity and availability of microprocessors and memory.
Such CNC is called “Softwired NC”.

Through observing the advancement of NC, the fact that NC has the same devel-
opment history as its components can be seen. In the beginning, the pulse division
circuit was made from the computer with tens of thousands of vacuum tubes and
the machine tool was controlled by activating an oil-pressure motor and controlling
a relay according to the result of logical processing. However, as semiconductors
appeared and were applied to NC during the 1960s, electrical motors and power el-
ements during the 1970s and PC components during the 1980s, so Hardwired NC
evolved into a Softwired NC machine based on micro processors, electric power and
electronic technology, and software technology.

Now, NC and CNC mean Numerical Controller and there is no difference between
them. Therefore, NC machine means a machine tool with a CNC system.

It is known that the general-purpose manual machine tool was introduced after the
steam engine was developed in the late 18th century. Thereafter, Jacquard invented
the method of automatic control of the weaving of fabrics with a loom machine by
using punch cards and this method was the beginning of the concept of NC. The
concept of NC was actually applied to machine tools after World War II and in 1947,
the United States Air force and the Parsons company developed the method almost
simultaneously for moving two axes by using punch cards including coordinate data
to machine aircraft parts. Since then, this technology was transferred to the servo
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laboratory in MIT and in March 1952, a 3-axis milling machine, being the first NC
machine tool, was developed. In this era, because there was not the circuitry such as
transistors and ICs, a vacuum tube was used and the size of NC was bigger than that
of the machine tools.

Since then, with the research effort, the use of NC became practical and in the
USA, an NC milling machine was put on sale by Giddings & Lewis, Kearney &
Tracker, and Pratt & Whitney. The concept of NC, which was introduced in scientific
journals from the United States, was also introduced into Japan and, in 1957, an NC
turning machine was developed.

1.3 CNC Driving System Components

The systems that transform the commands from NC to machine movements are
shown in Fig. 1.3. Figure 1.3a depicts the servo driving mechanism that consists
of a servo motor and power transmission device. The servo, the word originates from
”servue” in Latin, is the device that carries out faithfully the given command. The
command from NC makes the servo motor rotate, the rotation of the servo motor is
transmitted to a ball screw via a coupling, the rotation of the ball screw is transformed
into linear movement of a nut, and finally the table with the workpiece moves lin-
early. In summary, the servo driving mechanism controls the velocity and torque of
the table via the servo driving device of each axis based on the velocity commands
from NC. Recently, PMSMs (Permanent Magnet Synchronous Motors) have been
used as servo motors in machine tools.

Fig. 1.3 Driving mechanisms of machine tools

Figure 1.3b depicts the spindle unit which consists of a spindle motor and power
transmission device. The rotation of the spindle motor is transmitted to the spindle
body via a belt and the velocity ratio is dependent on the ratio of pulley sizes between
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the motor and spindle body. Recently, induction motors have come into general use as
the spindle motors of machine tools because the induction motor, which has no brush,
is better than DC motors with respect to size, weight, inertia, efficiency, maximum
speed, and maintenance.

Some machine tools use gears to transmit power instead of a belt. However, power
transmission by gears is not suitable for high-speed machining. Recently, a direct
drive, in which the spindle motor and spindle body (headstock) are directly connected
without a power transmission device, has been used for high-speed rotation beyond
10,000 rpm.

1.3.1 Driving Motor and Sensor

The term “driving motor” is used to mean both the servo motor, which moves the
table, and the spindle motor, which rotates the spindle. The spindle is the device that
generates adequate cutting speed and torque by rotating the tool or workpiece. Con-
sequently, high torque and high speed are very important for spindle motors and an
induction motor is generally used due to the characteristics of the spindle motor. Un-
like 3-phase motors, the servo motor needs characteristics such as high torque, high
acceleration, and fast response at low speed and can simultaneously control velocity
and position. Machine tools, such as turning machines and machining centers, need
high torque for heavy cutting in the low-speed range and high speed for rapid move-
ment in the high-speed range. Also, motors with small inertia and high responsibility
are needed for machines that frequently repeat tasks whose machining time is very
short; for example, punch presses and high-speed tapping machines.

The fundamental characteristics required for servo motors of machine tools are
the following:

1. To be able to get adequate output of power according to work load.
2. To be able to respond quickly to an instruction.
3. To have good acceleration and deceleration properties.
4. To have a broad velocity range.
5. To be able to control velocity safely in all velocity ranges.
6. To be able to be continuously operated for a long time
7. To be able to provide frequent acceleration and deceleration.
8. To have high resolution in order to generate adequate torque in the case of a small

block.
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9. To be easy to rotate and have high rotation accuracy.
10. To generate adequate torque for stopping.
11. To have high reliability and long length of life.
12. To be easy to maintain.

Servo motors are designed to satisfy the above-mentioned characteristics and the
term comprises the DC Servo Motor, Synchronous Type AC Servo Motor, and In-
duction Type AC Servo Motor as shown in Fig. 1.4.

Detector
Commutator

Brush
Armature coil

Magnet

(a) DC Servo Motor

Detector Armature coilMagnet

(b) Synchronous-type 
AC Servo Motor

Detector
Armature 

coil
Magnet

(c) Induction-type 
AC Servo Motor

Fig. 1.4 Types of servo motor

1.3.1.1 DC Servo Motor

The DC Servo Motor is built as shown in Fig. 1.4a.
The stator consists of a cylindrical frame, which plays the role of the passage

for magnetic flux and mechanical supporter, and the magnet, which is attached to
the inside of the frame. The rotor consists of a shaft and brush. A commutator and
a rotor metal supporting frame (rotor core) are attached to the outside of the shaft
and an armature is coiled in the rotor metal supporting frame. A brush that supplies
current through the commutator is built with the armature coil. At the back of the
shaft, a detector for detecting rotation speed is built into the rotor. In general, an
optical encoder or tacho-generator is used as a detector.

In the DC servo motor, a controller can be easily designed by using a simple cir-
cuit because the torque is directly proportional to the amount of current. The factor
that limits the output of the power is the heat from the inside of the motor due to cur-
rent. Therefore, efficient removal of the heat is essential to generate high torque. The
velocity range of DC servo motors is very broad and the price is very low. However,
friction with the brushes results in mechanical loss and noise and it is necessary to
maintain the brushes.
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1.3.1.2 Synchronous-type AC Servo Motor

The stator consists of a cylindrical frame and a stator core. The stator core is located
in the frame and an armature coil is wound around the stator core. The end of the coil
is connected with a lead wire and current is provided from the lead wire. The rotor
consists of a shaft and a permanent magnet and the permanent magnet is attached
to the outside of the shaft. In a synchronous-type AC servo motor, the magnet is
attached to a rotor and an armature coil is wound around the stator unlike the DC
servo motor. Therefore, the supply of current is possible from the outside without a
stator and a synchronous-type AC servo motor is called a “brushless servo motor”
because of this structural characteristic. Because this structure makes it possible to
cool down a stator core directly from the outside, it is possible to resist an increase
in temperature. Also, because a synchronous-type AC servo motor does not have
the limitation of maximum velocity due to rectification spark, a good characteristic
of torque in the high-speed range can be obtained. In addition, because this type of
motor has no brush, it can be operated for a long time without maintenance.

Like a DC servo motor, this type of AC servo motor uses an optical encoder or
a resolver as a detector of rotation velocity. Also, a ferrite magnet or a rare earth
magnet is used for the magnet which is built into the rotor and plays the role of a
field system.

In this type of AC Servo Motor, because an armature contribution is linearly pro-
portional to torque, Stop is easy and a dynamic brake works during emergency stop.
However, because a permanent magnet is used, the structure is very complex and the
detection of position of the rotor is needed. The current from the armature includes
high-frequency current and the high-frequency current is the source of torque ripple
and vibration.

1.3.1.3 Induction-type AC Servo Motor

The structure of an induction-type AC servo motor is identical with that of a general
induction motor. If multi-phase alternating current flows through the coil of a stator,
a current is induced in the coil of rotor and the induction current generates torque. In
this type of AC servo motor, the stator consists of a frame, a stator core, an armature
coil, and lead wire. The rotor consists of a shaft and the rotor core that is built with a
conductor.

An induction-type AC servo motor has a simple structure and does not need the
detector of relative position between the rotor and stator. However, because the field
current should flow continuously during stopping, a loss of heating occurs and dy-
namic braking is impossible, unlike the AC servo motor.

The strengths, weaknesses and characteristics of the servo motors mentioned
above are summarized in Table 1.1.
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Table 1.1 Servo-motor summary

DC Servo Synchronous Type Induction Type
Motor AC Servo Motor AC Servo Motor

Strengths Low price Brushless Simple structure
Broad velocity Easy stop No detector needed

range
Easy control

Weaknesses Heat Complex structure Dynamic braking
Brush wear Torque ripple impossible

Noise Vibration Loss of heating
Position-detection Position-detection

needed needed
Capacity Small Small or Medium or

medium large
Sensor Unnecessary Encoder, Unnecessary

resolver
Life Depends on Depends on Depends on

length brush life bearing life bearing life
High speed Inadequate Applicable Optimized
Resistance Poor Good Good
Permanent Exists Exists None

magnet

1.3.1.4 Encoder

The device that detects the current position for position control is called an encoder
and, generally, is built into the end of the power-transmission shaft. In order to con-
trol velocity, the velocity is detected by a sensor or is calculated by position control
data detected from the encoder. The method for detecting velocity uses the encoder,
a way of counting pulses generated in unit time and a means of detecting the interval
between pulses together.

An encoder can be classified as an optical type or a magnetic type as depicted in
Fig. 1.5.

The detection part of a magnetic-type encoder is different from that of an optical-
type encoder but the two kinds of encoder generate an output signal in the same
manner. Therefore, in this book, only the optical-type encoder will be addressed in
detail.

An optical-type encoder can be classified as an incremental type or an absolute
type with respect to function.

1. Incremental-type encoder
Figure 1.6 shows the structure of the incremental-type encoder with three kinds of
slit - A, B, and Z; Slits A and B generate an output waveform, the Z slit generates
the zero phase. The light emitted from an LED is detected by a photo-detector
after passing one slit of the rotation disk and one of the slits A, B, or Z on a fixed
slit panel. Slits A and B are arranged for a phase difference of 90 degrees and the
electric signal of the output is generated as a square wave whose phase difference
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is 90 degrees. The Z slit generates a square wave, indicating one revolution of the
encoder.
An incremental-type encoder has a simple structure and is cheap. It is also easy to
transmit a signal because the number of wires needed for sending output signals is
small. The number of output pulses from the encoder does not indicate the abso-
lute rotation position of a shaft but indicates the rotation angle of the shaft. If we
want to know the absolute rotation angle, the number of output pulses should be
summed and the rotation angle is calculated based on the number of accumulated
pulses. Because the rotation angle is detected continuously, the noise that occurs
during signal transmission can be accumulated in a counter. Therefore, some mea-
sure for preventing noise should exist as a basic requirement. If the power is off
then this type of encoder cannot indicate a position. Because this type of encoder
only generates pulses, the number of output pulses should be transformed into an
analog signal that is proportional to the pulse frequency in an F/V converter in
order to detect rotation velocity.

Slit Fixed-slit
panel

Rotation disk

LED
Z

A

B

A slit

B slitZ slit
Z B

A

Photo-detector

(a) Optical type (b) Magnetic type

Fig. 1.5 The components and structure of an encoder

2. Absolute-type encoder
The structure and the signal generation method of an absolute-type encoder are

identical with those of an incremental-type encoder. However, the disk slit of an
absolute-type encoder and the arrangement of photo-detectors are different from
those of an absolute-type encoder as shown in Fig. 1.7. In this type of encoder,
the slit on a disk slot provides a binary bit; so that, the outermost part of a disk
is set to the lowest bit and as many slits and photo-detectors exist as the number
of bits. The slits are arranged along concentric circles towards the interior of the
disk. Based on these components, the rotation position data is output in binary or
decimal form. In this way, the method where absolute position data is used is a
graycode method.
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Because an absolute-type encoder can detect the absolute position, the noise gen-
erated during sending the signal is not accumulated and the current position can
be detected after the electric current has been cut off and then supplied again.
However, because as many output signal wires are needed as the number of bits,
it is difficult to minimize size and decrease price.
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Fig. 1.6 Incremental-type encoder and output frequency

Slit

Fixed-slit panel

Rotation disk

LED

Photo-detector

(a) Rotation disk (b) Encoder composition

Fig. 1.7 Absolute-type encoder

1.3.1.5 Resolver

A resolver is a detector of rotation angle and position and is used as the sensor of a
motor. Unlike an encoder that generates an output signal in digital format, a resolver
generates an output in analog format. A resolver consists of a stator, a rotor, and
a rotation transformer. The coils of the stator and rotor are arranged to make the
distribution of magnetic flux a sine wave with respect to the angle. A resolver has
a similar structure to a motor and is insensitive to vibration and mechanical shock.
In addition, because the output is an analog signal, the long-distance transmission
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of signals and the miniaturization of the device are possible. However, the signal-
processing circuit is complex and the device is more expensive than a rotary encoder.

1.3.1.6 Speed Sensor

Although an encoder and a resolver are typical position sensors, they can be used as
speed sensors because speed can be calculated based on positional information from
them. A tacho-generator is one of the typical speed sensors. In general, this is called
a tacho-sensor and can be classified into brush-built-in types and brushless types. A
brush-built-in type has a similar structure to a direct current dynamo. It comprises
a stator, which is made from a permanent magnet, and a rotor, which is coiled. As
a coil emits a magnetic flux with rotation of the rotor, a voltage is generated and is
transmitted to the outside via the brush. The brushless-type comprises a rotor, being
a permanent magnet, a coiled stator, and a single device that detects the position
of the rotor. According to the rotational position of the rotor, the smoothed voltage
induced from each coil is output sequentially. These two types generate a voltage
that is proportional to the rotation speed. However, because the brush-built-in type
has a limitation on life length, it is not used as the speed sensor of a servo motor.

1.3.2 Linear Movement Guide

A ball screw is used to move the tool post or table and plays the role of changing the
rotation of a servo motor into linear movement. A Linear Movement (LM) guide is
used to increase the accuracy and smoothness of the linear movement.

An LM guide consists of an M-shaped guide rail and a transferring part, Fig. 1.8.
The bearing exists between the guide rail and the transferring part and lubricant is
supplied to the surface of the LM guide rail to decrease friction while the transferring
part is moving.

A ball screw is a lead screw that is operated by a ball bearing. A nut is designed
to make the ball bearing rotate continuously and a ball bearing can come back by
rotating from one end of the nut to the other end. As the ball is in contact with a
screw and a nut, it plays the role of reducing the sliding friction of the lead screw
that occurs due to rotation. Applying rolling contact to the contact surface between
metals in contact minimizes the friction force when movement starts and prevents
sticking when moving at low speed. In addition, reduction of backlash is possible by
using an enlarged ball bearing or double nut.

The lead of a ball screw is related to the displacement unit of the machine tool
table. In CNC, the displacement length per one pulse output from NC is defined as
a BLU (Basic Length Unit). For example, if one pulse makes a servo motor rotate
by one degree and the servo motor moves the table by 0.0001mm, one BLU will be
0.0001mm.
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Fig. 1.8 Linear-movement guides

1.3.3 Coupling

A flexible coupling is mainly used as the machine component that connects a servo
motor shaft with a ball screw. When a ball screw and servo motor are joined, the
center of their shafts should be identical. However, in practice, this is very difficult.
For this reason, a coupling should be designed to be insensitive to misaligned ro-
tation centers. The flexible coupling shown in Fig. 1.9a meets the above-mentioned
requirement and makes it easy to join the servo motor to the ball screw.

(a) (b)

Fig. 1.9 Flexible coupling and power transmission belt
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In general, belts and gears are used as the mechanical components as the link be-
tween a spindle motor and a spindle body. In the case when a servo motor and a spin-
dle body are separated, a belt is used for transmitting power. In the case when high
torque is needed at low speed, gears are used as speed reducers. A way to use a gear
or belt is called the “indirect driving method”. Figure 1.9b shows a variety of belts.
Using a belt is not suited to high-speed machining and has problems about noise and
wear. To overcome these drawbacks, the direct driving method (direct drive) is used.
In the direct driving method, the shaft of a spindle motor is directly connected with
a spindle body or a spindle motor itself is built into a spindle body.

The advantages of direct drive are that backlash does not exist and the runout
amount is very small. In addition, it is possible to suppress the variation of torque
and rotation and it is easy to control. However, the price is very high.

1.4 CNC Control Loop

As the actual velocity and position detected from a sensor are fed back to a control
circuit, the servo motor used in the CNC machine is continuously controlled to mini-
mize the velocity error or the position error (Fig. 1.10). The feedback control system
consists of three independent control loops for each axis of the machine tool; the out-
ermost control loop is a position-control loop, the middle loop is a velocity-control
loop, and the innermost loop is a current-control loop. In general, the position-control
loop is located in the NC and the others are located in a servo driving device. How-
ever, there is no absolute standard about the location of control loops and the loca-
tions can be varied based on the intention of the designer.
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Fig. 1.10 Three kinds of control loop in CNC

In the spindle system of machine tools, feedback control of velocity is applied
to maintain a regular rotation speed. The feedback signal is generally generated in
two ways; a tacho-generator, which generates an induction voltage (analog signal) as
a feedback signal, and an optical encoder, which generates pulses (digital signals).
In recent times it is typical that feedback control is performed based on an optical
encoder signal instead of a tachometer signal.
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The detector can be attached to the shaft of a servo motor or the moving part and
the control system can be categorized into four types according to the location at
which the detector is attached.

1.4.1 Semi-closed Loop

The semi-closed loop is the most popular control mechanism and has the structure
shown in Fig. 1.11a. In this type, a position detector is attached to the shaft of a servo
motor and detects the rotation angle. The position accuracy of the axis has a great
influence on the accuracy of the ball screw. For this reason, ball screws with high
accuracy were developed and are widely used. Due to the precision ball screw, the
problem with accuracy has practically been overcome.

If necessary, pitch-error compensation and backlash compensation can be used
in NC in order to increase the positional accuracy. The pitch-error compensation
method is that, at the specific pitch, the instructions to the servo driver system
are modified in order to remove the accumulation of positional error. The backlash
compensation method is that, whenever the moving direction is changed, additional
pulses corresponding to the amount of backlash are sent to the servo driver system.
Recently, the usage of the Hi-Lead-type ball screw with large pitch for high-speed
machining has increased.

1.4.2 Closed Loop

The performance of the semi-closed loop depends on the accuracy of the ball screw
and it is possible to increase the positional accuracy via pitch compensation and
backlash compensation. However, generally speaking, the amount of backlash can be
varied according to the weight of the workpiece and location and accumulation pitch
error of the ball screw is varied according to the temperature. In addition, because
the length of the ball screw is limited for practical reasons, a rack and pinion driving
system is used in large-scale machine tools. However, the accuracy of the rack is
limited. In this case, the closed loop shown in Fig. 1.11b is applied. In the closed
loop, the position detector is attached to the machine table and the actual position
error is fed back to the control system. Closed loop and semi-closed loop are very
similar except in the location of the position detector, and the position accuracy of
closed loop is very high. However, the resonance frequency of the machine body,
stick slip, and lost motion have an influence on the servo characteristics because the
machine body is included in the position control loop.

That is, a following error, the difference between the command position and the
detected position, occurs and the servo is rotated at a speed proportional to this fol-
lowing error in order to decrease it. The decreasing speed of the following error is
related to the gain of the position control loop. The gain is an important factor that
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defines the property of the servo system. In general, as the gain increases, the re-
sponse speed and dynamic accuracy increase. However, high gain makes the servo
system unstable. Unstable means hunting, which is impossible to stop at the com-
mand position due to repetitive overshooting and returning. In the closed loop, if the
resonance frequency of the machine driving system is not sufficiently higher than
the gain, the control loop system becomes unstable. In addition, stick slip and lost
motion are the main factors that give rise to hunting. Therefore, it is necessary to
increase the resonance frequency of the machine driving system and, for this, it is
necessary to increase the rigidity of the machine, decrease the friction coefficient of
the perturbation surface, and remove the cause of lost motion.

1.4.3 Hybrid Loop

In closed loop, it is necessary to lower the gain in the case when it is difficult to
increase the rigidity in proportion to the weight of the moving element or decrease
lost motion as in a heavy machine. If the gain is very low, though, the performance
becomes poor with respect to positioning time and accuracy. In this case, the hybrid
loop shown in Fig. 1.11c is used. In the hybrid loop, there are two kinds of control
loop; semi-closed loop, where the position is detected from the shaft of a motor, and
closed loop, which is based on a linear scale. In the semi-closed loop, it is possible to
control with high gain because the machine is not included in the control system. The
closed loop increases accuracy by compensating the error that the semi-closed loop
cannot control. Because the closed loop is used for compensating only positional
error, it is well behaved in spite of low gain. By combining the closed loop and
the semi-closed loop, it is possible to obtain high accuracy with high gain in an ill-
conditioned machine.

1.4.4 Open Loop

Unlike the above-mentioned control loops, open loop has no feedback. Open loop
can be applied in the case where the accuracy of control is not high and a stepping
motor is used. Because open loop does not need a detector and a feedback circuit,
the structure is very simple. Also, the accuracy of the driving system is directly in-
fluenced by the accuracy of the stepping motor, ball screw, and transmission.

1.5 The Components of the CNC system

The CNC system is composed of three units; the NC unit which offers the user inter-
face and carries out position control, the motor unit, and the driver unit. In a narrow
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Fig. 1.11 Classification of control mechanism according to position data detection method

sense, only the NC unit is called a CNC system. The contents of this book focus on
the architecture and function of NC and do not include the motor unit and the driver
unit
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Fig. 1.12 The construction of CNC
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From a functional point of view, the CNC system consists of the MMI unit, the
NCK unit, and the PLC unit, Fig. 1.12. The MMI (Man Machine Interface) unit offers
the interface between NC and the user, executes the machine operation command,
displays machine status, and offers functions for editing the part program and com-
munication. The NCK (Numerical Control Kernel) unit, being the core of the CNC
system, interprets the part program and executes interpolation, position control, and
error compensation based on the interpreted part program. Finally, this controls the
servo system and causes the workpiece to be machined. The PLC (Programmable
Logic Control) sequentially controls tool change, spindle speed, workpiece change,
and in/out signal processing and plays the role of controlling the machine’s behavior
with the exception of servo control.

Figure 1.13 shows the conceptual architecture of CNC machine tools from the
hardware and software points of view.
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Fig. 1.13 The components of a CNC system

From the hardware point of view, CNC machine tools consist of CNC, motor drive
system, and machine tools. The output of the position control, being the end func-
tion of the CNC system, is sent to the motor drive system, the motor drive system
operates a servo motor by velocity control and torque control, and, finally, the servo
motor makes the moving part move via the power-transmission device. In the CNC
system, the processor modules that process the functions of the MMI unit, NCK unit,
and the PLC unit consist of a main processor, a system ROM and a RAM that stores
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user applications, part programs and PLC programs, respectively. The process mod-
ule is connected with an interface that is equipped with key input, display control,
external input and system bus. Therefore, the architecture of a CNC system is simi-
lar to that of a multi-process computer. The CNC system also has an Analog/Digital
input/output device for direct communication with external machines and a commu-
nication interface for linking an external motor driving device with an input/output
module.

In the CNC system, initially velocity commands in analog format were used for
transmitting signals to the motor driving system. However, recently, because noise
occurs while transmitting analog signals, not only are digital signals used for ve-
locity command but also digital communication is used for communication between
the CNC system and the motor driving system. SERCOS is the most popular digital
communication mechanism and has come to be a de-facto standard. In digital com-
munication there is an advantage that it is possible to exchange a variety of data and
remove noise by using optical cables. Therefore, it is possible to set the parameters
of the driving system in NC, monitor the status of the driving system, and increase
accuracy by removing noise.

By expanding the concept of digital communication, the communication mech-
anism has been applied to input/output devices. That is, the connection between a
CNC system and a variety of sensor and mechanical devices is done via only one
communication line. For this communication mechanism, a standard communica-
tion protocol is essential and various protocols such as Profi-Bus, CAN Bus, and
InterBus-S were introduced.

From the software point of view, the CNC system can be shown as in Fig. 1.13.
The CNC system consists of MMI functions that support user operation and program
editing and display machine status, NCK functions that execute interpretation, inter-
polation and control, PLC functions that carry out sequential logic programs. In the
following sections, these will be addressed in detail.

1.5.1 MMI Function

The MMI unit offers the user interface that is needed when a user operates machine
tools. Therefore there are many kinds of user interface based on the design concepts
of the CNC maker. Functions of the user interface are generally classified into five
groups.

1. Operation functions: These functions are used very frequently and support oper-
ation of the machine and the display that shows the machine status. Figure 1.14a
depicts the status of the machine while it is running. In Fig. 1.14a, the position,
distance-to-go, and feed of each axis, spindle speed, the block that is being exe-
cuted, and override status are shown. In addition, functions to help machine op-
eration such as jog, MDI, program search, program editor, and tool management
are provided.
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2. Parameter-setting functions: In the CNC system there are various parameters
for internal use and these are categorized into three kinds: Machine parameters
that are used for setting machine regulation, servo/spindle driving system, tool
offset, work coordinate, and safety boundary; program parameters that should be
set during editing of the part program; and customization parameters that are used
to adapt the machine to user requirements. These functions provide the interface
for setting, storing, and searching parameters. Figure 1.14b shows the display for
searching for internal parameters and modifying them.

3. Program-editing functions: These functions are able to edit and modify the part
program, which is G-code based on the EIA/ISO standard. Practically, it is nec-
essary for the user to know G/M-codes and carry out mathematical calculations
in order to generate the G-code part program. Because mathematical calculation
makes it difficult to edit part programs, CNC has recently begun to employ con-
versational programming systems. Figure 1.14c shows the display that the conver-
sational programming system provides in order to edit a part program for drilling.
By interaction with the GUI a user can quickly generate a part program for drilling
without memorizing the input attributes for G-code cycles. Figure 1.14d also
shows the shape calculator to help a user define the geometric shape. Recently,
the conversational programming system has come to be recognized as an essen-
tial function of CNC and therefore, in this book, the design and the example of a
feature-based conventional programming system will be addressed in detail.

4. Monitoring and alarm functions: the CNC system always informs a user of the
machine status by monitoring and, if need be, these functions execute the neces-
sary tasks and inform the user of the result. These functions are essential when
machine tools are executing at high speed. These functions play the role of provid-
ing monitoring information such as the alarm status, emergency recovery method,
PLC status, and ladder diagram under execution.

5. Service/utility functions: Besides the other four essential functions, many useful
functions are provided to assist users. The DNC function for transmitting the part
program, which is edited externally, to the CNC, the file service for copying inter-
nal parameters to the outside, and the communication function for communicating
with computers belong to these functions.

1.5.2 NCK Function

In general, the NC system interprets the input data, keeps them in memory, sends
commands to the driving system, and detects feedback signals from the drive sys-
tem. The NC system also performs logical decision making such as when coolant
is provided and when the spindle starts rotating and mathematical calculations for
acceleration control and interpolation of lines, circles and parabolae. Therefore, the
NCK unit has the task of being in charge of the servo and driving control and the
PLC unit has the task of being in charge of logic control, so the burden that occurs
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(a) (b)

(c) (d)

Fig. 1.14 Man-Machine Interface (HiTrol-M100) (a) Operation functions, (b) Parameter setting
functions, (c) Drilling editing functions, (d) Geometric shape calculator

during control is adequately balanced. The functional blocks and the data flow of
the NCK unit, being the key unit of the CNC system, are shown in Fig. 1.15. The
interpreter, interpolator, acceleration/deceleration controller, and position controller
are the main functions of the NCK unit.

1. An interpreter plays the role of reading a part program, interpreting the ASCII
blocks in the part program, and storing interpreted data in internal memory for
the interpolator. In general, NC issues the orders related to the interpreted data
and the interpreter reads and interprets the next block while the command is be-
ing performed. However, if the time to interpret the block is longer than the time
to finish the command, the machine should wait for the completion of interpre-
tation of the next block so that a machine stop cannot be avoided. Therefore, in
order to prevent machine tools from stopping, a buffer that temporarily stores the
interpreted data is used. The buffer, called the internal data buffer, always keeps
a sufficient number of interpreted data and all interpreted data are stored in the
buffer. Details will be given in Chapter 2.

2. An interpolator plays the role of sequentially reading the data from the internal
data buffer, calculating the position and velocity per unit time of each axis, and
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storing the result in a FIFO buffer for the acceleration/deceleration controller. A
linear interpolator and a circular interpolator are typically used in an NC system
and a parabola interpolator and a spline interpolator are used for part of an NC
system. The interpolator generates a pulse corresponding to the path data accord-
ing to the type of path (e.g. line, circle, parabola, and spline) and sends the pulse
to the FIFO buffer. The number of pulses is decided based on the length of path
and the frequency of the pulses is based on the velocity. In an NC system, the
displacement per pulse determines the accuracy; for example, if an axis can move
0.002 mm per pulse, the accuracy of the NC system is 0.002 mm. In addition, the
NC system should generate 25000 pulses for the moving part to move as much
as 50 mm and 8333 pulses per second to move at a speed of 1m per minute. In
Fig. 1.15, the data in the FIFO buffer is transmitted to the next function via a fine
interpolator, which interpolates precisely the interpolated data and, if not neces-
sary, does not have to be implemented. Details will be given in Chapter 3.

3. If position control is executed by using the data generated from the interpola-
tor, large mechanical vibration and shock occur whenever part movement starts
and stops. In order to prevent mechanical vibration and shock, the filtering for
acceleration/deceleration control is executed before interpolated data is sent
to the position controller. This method is called the “acceleration/deceleration-
after-interpolation” method. An “acceleration/deceleration-before-interpolation”
method exists too, where acceleration/deceleration control is executed before in-
terpolation. These two methods will be addressed in Chapter 4 in detail.

4. The data from an acceleration/deceleration controller is sent to a position con-
troller and position control is carried out based on the transmitted data in a con-
stant time interval. A position control typically means a PID controller and issues
velocity commands to the motor driving system in order to minimize the position
difference between the commanded position and the actual position found from
the encoder.
However, the problems of noise cannot be avoided by using an analog signal.
Chapter 5 will address this subject in detail.

1.5.3 PLC Function

The logic controller is used to execute sequential control in a machine and an indus-
try. In the past, logic control was executed by using hardware that consisted of relays,
counters, timers, and circuits. Therefore, it was considered as a hardware-based logic
controller. However, recent PLC systems consist of a few electrical devices including
microprocessors and memory, able to carry out logical operations, a counter function,
a timer function and arithmetic operations. Therefore, a PLC system can be defined
as a software-based logic controller. The advantages of PLC systems are as follows:

Flexibility: The control logic can be changed by changing only a program.
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Fig. 1.15 NCK functional blocks

Scaleability: The expansion of a system is possible by adding modules and
changing programs.
Economic efficiency: Reduction of cost is possible due to the decrease in design
time, high reliability, and easy maintenance.
Miniaturization: The installation dimension is smaller compared to a relay con-
trol box.
Reliability: The probability of failure occurrence due to bad contact decreases
because of using a semiconductor.
Performance: Advanced functions such as arithmetic operations and data editing
are possible.

The hardware architecture of the PLC unit of an NC system comprises a mi-
croprocessor, a system memory, a program memory, and an input/output module as
shown in Fig. 1.13. As soon as the power is turned on, the system memory sets
the PLC hardware environment and the program memory, manages input/output, re-
lay/timer/counter and stores a user program and the data to be interpreted by the
microprocessor. The input/output module manages the interface with limit switch,
relay, and ramp.

The function modules that are executed in a PLC unit can be defined as shown in
Fig. 1.16 and are summarized below. Initially, a user creates the application program
used in the PLC unit by using an external PLC program editor and inputs the appli-
cation program to the PLC unit. At this stage, a specific device is used for helping
the user to edit the program and is called a programmer or loader. The program-
mer consists of the editor that creates a program and the compiler that converts the
program into the PLC-interpretable language. The reason why a compiler is used is
that a compiled program is more efficient and hence the PLC can run the program
quickly. The compiled PLC program is transmitted to the CPU module. In addition,
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the status of the PLC that is being executed in the CPU module is sent to the PLC
program for a user to monitor the activity status.

The module that reads the program edited by the Loader and executes sequential
logic operations is the Executer, which is the core of a PLC kernel. The Executer
is repeated successively, reading the input points, doing logic operations of the pro-
gram, and sending the results to the output points via the output module.

Executer

PLC Program

Input Module

Editor

ProgrammerProgrammer

Output Module

Monitor

Compiler

CPU ModuleCPU Module

Executer

PLC Program

Input Module

Editor

ProgrammerProgrammer

Output Module

Monitor

Compiler

CPU ModuleCPU Module

Fig. 1.16 The architecture and function of the PLC system

The PLC unit of a CNC system is similar to the general PLC system but there is an
auxiliary controller that assists with part of the functions of the NCK unit. Therefore,
the following functions are necessary:

- Circuit dedicated to communicating with NCK.
- Dual-port RAM for supporting high-speed communication.
- Memory for the exchanged data during high-speed communication with NCK.
- High-speed input module for high-speed control such as turret control.

In practice, according to the decisions of individual CNC and PLC makers, vari-
ous PLC languages are used. Due to this, there is a problem with respect to maintain-
ability and training of users. To overcome this problem, the standard PLC language
(IEC1131-3) was established and usage has spread. The standard, IEC-1131-3, de-
fines five kinds of language; 1) Structured Text (ST), 2) Function Block Diagram
(FBD), 3) Sequential Function Charts (SFC), 4) Ladder Diagram (LD), and 5) In-
struction List (IL 1). Now it is necessary for users to edit programs based on the
standard language and it is required for developers to implement applications for
interpreting and executing a PLC program.
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1.5.4 Real-time Control System

In an NC system, the NCK unit, the PLC unit, and the MMI unit should be executed
in constant time intervals. Because of this property, the NC system is a complex
real-time system.

For example, assume that there is a system that has NCK functions such as inter-
pretation, interpolation, and position control and the MMI function. In this system,
fine management of the execution schedule of the modules that occupy the proces-
sor resource is required, as shown in Fig. 1.17. That is, the task scheduling function
that manages the execution of the modules based on predefined time intervals and
priority is necessary.

Position

Interpolation

Interpreter

MMI

Task Priority

System Time
1         2         3         4         5         6          7  8         9    ...

Fig. 1.17 Task scheduling in an NC system

In the above example, the design intention is that the position controller, the inter-
polator, the interpreter, and the MMI have, respectively, the highest, the second, the
third, and the lowest priorities. Also in the design is the feature that the position con-
trol with the highest priority is activated every 1 msec and the interpolator with the
second highest priority every 2 msec, and that the interpreter is executed once every
4 msec. The above-mentioned three tasks are designed to have constant cycle time
(sampling time). The MMI with the lowest priority is designed to use the surplus
processor resource after the cyclic tasks finish. That is, it is designed as a non-cyclic
task.
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For the NC system design, the modularization of tasks and the system design such
as the allocation of priority for each task, the selection of scheduling method and the
synchronization and communication mechanism among tasks are required.

In this book, the architecture and design of the CNC system and the architecture
and functions of the NCK, the PLC, and the MMI unit will be addressed in detail.
With this information it will be possible for a reader to implement a CNC system.

The contents that will be presented about the NCK unit in this book can be applied
not only to the NCK unit of an NC system but also to the GPMC (General Purpose
Motion Control) for the servo motor. In general, because MMI, NCK, and PLC com-
prise very complex and real-time functions, usage of individual microprocessors for
each module is typical. However, the advancement of microprocessor technology
makes it possible to execute all modules by using a single processor. That is, the im-
plementation of a simple CNC system becomes possible by dividing the functions of
the modules into cyclic tasks and non-cyclic tasks and using real-time OS. The de-
sign of the PLC and the MMI unit, real-time OS, operation of application modules,
and system programming will also be addressed.

1.6 The Progress Direction of the CNC System

Over the last 50 years, the advance of NC and CNC can be summarized as shown
in Fig. 1.18. NC systems developed in the 1950s were implemented based on hard-
ware and research for replacing the hardware components with software components
got under way. The advancement of electrical technology in the 1970s - 1980s, es-
pecially, meant that the NC system became a CNC system whose functions were
executed by a micro processor. However, the CNC system is a closed system where
a user cannot add customized functions to the CNC system.

NC CNC OAC Soft-NC

∼ 1950 ∼ 1980 ∼ 1990 ∼ 2000

Hard-wired Soft-wired PC-based Network-based
Closed system Open H/W Open H/W

and S/W

STEP-based

Fig. 1.18 The change of NC over time

Therefore, during the 1990s, an effort was made to change the closed CNC system
to an Open Architecture Controller (OAC), which is a user-oriented CNC system,
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and PC-based open CNC consisting of a PC and VME was introduced as an Open
Architecture Controller. However, the PC-based open CNC did not achieve perfect
openness to fully satisfy the various requirements of a user from the hardware and
software points of view. Consequently, in order to overcome this drawback, it is
expected that future CNC systems will advance to become soft-NC, being open CNC
with an architecture where it is possible to achieve full openness in the software as
well as in the hardware as modularized functions are systematically integrated via
network technology.

Soft-NC is designed to use a PC platform as hardware and the architecture is
designed based on object-oriented technology in order to fulfill openness from the
software viewpoint. Component technology will be applied to the implementation of
function modules and a common soft-bus that is able to support real-time distributed
processing will be applied for integration of components. The soft-NC will have
an architecture that can be applied to robots as well as to machine tools. The main
characteristics of Open CNC are summarized below.

1. Support STEP as a standard data format for machining data for a seamless flow
in the manufacturing process (from CAD to machining).

2. Use soft-bus (e.g. CORBA) to support a real-time distributed processing environ-
ment and to be free to add function modules to CNC.

3. Support component-based API to connect application software modules with the
system platform.

4. Support standard interfaces to communicate with external systems.
5. Support many kinds of field bus to connect sensors with I/O.
6. Support a digital interface between the servo system and the CNC system.

Figure 1.19 shows an example of a CNC to which the concept of Soft-NC is
applied. The CNC shown in Fig. 1.19 is designed based on the concept of modular-
ization, standardization, and distributed processing and uses STEP-compatible part
programs as input. This CNC generates toolpaths by using the code interpreter and
the toolpath generator that are linked via soft-bus and API. After this, the toolpath
is transferred to NCK via a standardized communication environment. During exe-
cution of the above-mentioned procedure, the operation monitoring module and the
adaptive control module, which users develop and add to the CNC, are executed
simultaneously.

In conclusion, the future NC system should be more intelligent and should be
able to carry out complex tasks in a distributed environment with the advancement
of micro processors and communication systems. That is, the future NC system will
advance to be a distributed system that can execute real-time compensation based on
machining status from sensors, communicate and share machining data with other
CNCs, Cell controllers, and MES, and perform tasks by itself.
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Fig. 1.19 Conceptual architecture of an intelligent STEP-compliant CNC

1.7 Summary

The MMI, NCK, PLC, and servo driver are components of which an NC system
consists and, in particular, the NCK is a key component that has an influence upon
the performance of CNC. NCK consists of the interpreter, the interpolator, Acceler-
ation/Deceleration controller, and position controller; the interpreter interprets a part
program and calculates the position to which the axes move. The interpolator calcu-
lates the displacement of axes for every sampling period. The Acceleration/ Deceler-
ation controller plays the role of smoothing axis movement. The position controller
controls the axis movement every sampling period for position control.

The PLC is the module that controls machine behavior, except for servo control,
and is similar to the PLC system of an automated device with respect to sequen-
tially carrying out the sequence program (the so-called ladder program) edited by
the user. However, in respect of exchanging data with the NCK and sharing the sys-
tem resource, the PLC in a CNC system is distinguished from the PLC system of an
automated device.

The MMI plays the role of providing the various user interfaces that are needed
for a user to use NC easily. In order to design the MMI, it is necessary to understand
the cutting mechanism and machine operation mechanism unlike PLC and NCK.
In order to execute the above modules, it is essential to guarantee a real-time envi-
ronment. That is, the key for developing Soft-NC is the scheduling that satisfies the
execution of the software modules in real time. Recently, NC systems have advanced
from being closed systems to being open and distributed systems and the importance
of software will grow.



Chapter 2
Interpreter

The Numerical Control Kernel (NCK) unit is the key component of a CNC system
and consists of a variety of modules that are sequentially executed in a synchronized
schedule. In this chapter the code interpreter will be addressed. This is responsible
for converting the part program and machine instructions into internal commands for
NC. In order to understand the code interpreter the first thing is to understand the part
program that is the input to the interpreter. After this, the structure and the functions
of the code interpreter will be addressed in detail.

2.1 Introduction

The code interpreter is a software module, which translates the part program into
internal commands for moving tools and executing auxiliary functions in a CNC
system.

Figure 2.1 depicts the internal behavior of the CNC system and shows the func-
tions of the Man-Machine Control (MMC), Numerical Control Kernel (NCK), and
Drives (DRV). The part program that a programmer generates based on the shape
of the part, cutting conditions, and tools is entered into CNC via the MMC and the
NCK subsequently generates the control commands for the drivers from the part
program through various stages; calculating the movement path by interpreting the
part program, generating velocity profile and displacement for each axis by interpo-
lation, smoothing the movement by acceleration/deceleration (acc/dec) control, and
generating position control command.

Among these stages, the interpreter could be considered as a simple task for the
conversion of G/M codes to the CNC-understandable internal data structures. How-
ever, the design and implementation of the interpreter is a large and comprehensive
task because programming rules or grammar described in a programming manual
and an operating concept shown in an operation manual should be considered when
developing the interpreter. Therefore, the interpreter is the representative indicator
that shows the design concept and the functional aspect of a CNC and is a big part of

33
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Fig. 2.1 Internal behavior of the CNC system (MMC, NCK, DRV functions)

CNC as it generally spends more than 50% of the total development time to develop
the interpreter.

In this chapter, the format and function of CNC part programs will be briefly ad-
dressed and the architecture, such as the structure of an interpreter, execution proce-
dure, and memory structure, will be addressed. However, because the detailed func-
tion of the CNC and the part program are slightly different for each CNC maker,
the program manual should be referenced to find out the detailed functions of any
particular CNC.

2.2 Part Program

Although the standard exists for generating a CNC part program, sequentially listing
the commands for executing CNC, each CNC maker has, in practice, their own code
system including their own commands. In this section, the common concept will be
described based on the standard code.
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2.2.1 Program Structure

A part program contains the commands, called blocks, for machining a part and each
block can be defined using the following commands.

• NC commands such as G, M, S, T, H, D, F code and related address
• Call of sub program and displaying message
• Setting variable and conditional program calls

In a part program, the English alphabet, Arabic numbers, and symbols are used
and Fig. 2.2 illustrates the format and elements of a part program.

P123456 ; Program number
EOB(End of Block) code

Word

Address

N50     G04     P100 ;

N40     Y-20     M03 ;

N30     X15 ;

N20     G01    X50     Y20     F120    S100 ;

N10     G90 ;

N60     M30 ;

Number

Block number

Block

Fig. 2.2 Program format and construction elements

A part program consists of a sequence of NC blocks, each block consists of several
words, and a word is composed of an address and number. The program number is
a number for identifying the particular part program on CNC, where more than one
part program is executed, and is written using a particular address and number in the
heading of a part program. In this book, address P is used but O or # is also used by
some specific CNC makers.

A block consists of one block number, at least one word, and the EOB, meaning
the End Of Block. The word is the set of characters in a specific order. The word
is the minimum unit for internal processing and commanding the machine tools to
perform a particular behavior. The word consists of an address and a subsequent
number, as below:
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NC word:

address: value

Y −20

The address is constructed from one of the alphabetic characters (A Z) or a com-
bination of alphabetic characters. The subsequent number provides the data that is
required to execute the behavior related with the address. Table 2.1 summarizes the
addresses that have typically been used and the function that is related with the ad-
dress.

Table 2.1 Typical addresses and associated functions

Function Address Meaning (Example) Unit
Program number P Program identity

no. e.g. P123456
Block number N NC seq.no.

N100
Preparatory function G Mode command

G01
Coordinate (command X, Y, Z / Axis / dir. mm, inch
for translational axis) U, V, W X100 W20
Coordinate (command A, B, C Axis deg
for rotary axis) A30
Feedrate F Feedrate per min. mm/min,

F200 inch/min,
deg/min

Feedrate per rev. mm/rev,
F1 inch/rev,

deg/rev
Spindle speed S S3000 rpm
Tool T Tool number

T12
Auxiliary function M Machine command

M06
Offset Number H, D Offset register no.

H10
Number of repetitions L Iteration no.
of subprogram L5
Radius of circle R Arc rad., corner rad. mm, inch
or arc R3
Chamfer C Chamfer amount mm, inch

C2
Center position of circle I, J, K Circle center coords. mm, inch

Among the addresses described in Table 2.1, the G address, for preparatory func-
tion, and the M address, for auxiliary function, are largely related to the performance
of CNC system. G addresses denote commands for tool movement by moving the
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translational axes or the rotary axes along the specified path. M addresses denote
commands for controlling the on/off functions in machine tools. G-codes are classi-
fied into two types: one is a modal code and the other is non-modal code. A modal-
type code is effective throughout the following blocks until the modal cancel com-
mand is used. On the other hand, a non-modal-type code is effective within the com-
manded block and automatically canceled by the next block. Modal-type codes are
classified into several groups, called modal groups, with respect to the similarity of
function. In one block, it is prohibited to use more than one G-code that is included
in the same modal group.

The address groups based on the functions of CNC system are summarized in
Table 2.2. As the standard for editing a part program based on these addresses, ISO
6983 has been widely used. However, each CNC maker has their own G&M code
system where maker-specific functions have been added to ISO 6983. Accordingly,
current G&M code systems for generating part programs depend on the CNC system.
If the CNC system is changed, it is almost impossible to reuse the existing part
program. Therefore, in order to create a part program manually, it is necessary to
refer to the programming manual of the particular CNC maker.

According to the level of CNC system, the number of feasible addresses varies
from several tens to several hundreds. Ths means that the more feasible addresses a
CNC system has, so the more advanced the equipment category to which the CNC
system belongs. Further, according to the machine type, the applicable addresses
are defined in different ways. The G-code list and the modal group for a milling
machine and a turning machine are summarized in Appendix A. In the following, the
interpreter is the module that has the function of interpreting the various addresses,
words, and grammar.
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Table 2.2 Summary of address groups based on CNC system functions

Functions Description
Preparatory Codes are used for controlling axis and the CNC system
function prepares the execution of the particular function.
(G-code) (1) movement: command the relative movement between

tool and workpiece.
(2) Setting local coordinate system: specify the origin
and orientation of local coordinate system including
orthogonal coordinate system, the polar coordinate
system, and rotational coordinate system.
(3) Interpolation: command machining various profiles
such as line, arc, helical, spline, etc.
(4) Miscellaneous: commands for tool compensation,
safety check, and skip.

Feed Command the relative speed between tool and
function workpiece for interpolation command.
(F-code)
Spindle Command the spindle speed (RPM).
functions
(S code)
Tool Command tool change and specify the tool compensation.
function
(T-code)
Auxiliary Function commands for the simple control of a machine
function tool including relay/switch on and off as well as axis
(M-code) control.

(1) Coolant: command coolant on or off.
(2) Start/End of a main and sub program: inform the
beginning and end of a part program.
(3) Spindle: command a spindle to rotate in CCW or CW
direction and specify the spindle speed, limit speed and
spindle gear change.
(4) Miscellaneous: Command the change of tool,
workpiece, pallet and rotation of the table/loader.

Utility (1) Subprogram: To simplify the main program,
functions subsidiary program

(2) MACRO register a series of commands as
a particular command and execute various functions by
using the registered command. In a macro, the use of
variables is possible and arithmetic operations between
variables is possible.
(3) Fixed cycle

(i) Turning cycle
Define a series of commands to perform the turning
operations as one command. Outer turning, facing,
grooving, and threading cycle are defined.

(ii) Drilling cycle
Define a series of commands to perform drilling,
tapping, boring, reaming and peck drilling as
drilling cycle.
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Table 2.2 (continued)
(iii) Milling cycle

Pocket milling, Slot milling. Define a series
of commands to machine profiles that are
frequently machined during pocket milling and
slotting as milling cycles.

(iv) Touch Probe cycle
This command enables the modification of a program
via on-machine inspection before or after machining.
This enables compensation of finishing with
inspection of the machining accuracy.

It is possible to edit the description by inserting words in parentheses within a
block, as below.

N20 G01X0Y0 (MOVE TO ZERO POINT);

�
comment

The description comment has no influence on the execution of a part program. Be-
cause the description can be shown on the display of the CNC system together with
the block during editing or executing a part program, it is very useful for managing
part programs.

The end of a part program is signalled by the command M02 or M03. By inserting
M02 or M03 at the end of a part program, all modal values are initialized and reset.
Since the commands M02 and M03 are executed last, they can be located anywhere
within the last block.

2.2.2 Main Programs and Subprograms

2.2.2.1 Main program

A part program is classified into a main program and subprograms. Typically, the
CNC system executes a main program. If a main program includes the command
that is used for calling subprograms, the CNC system executes the subprogram indi-
cated. If, during execution of the subprogram, the command for returning to the main
program is called, the main program is then resumed at the block after the command
that called the subprogram, as shown in Fig. 2.3.

2.2.2.2 Subprogram

In the case that there are fixed routine blocks or iterated operation patterns in a part
program, part programming can be made easier if they are stored as a subprogram
in the internal memory of CNC system. It is possible to call the subprogram from a
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Fig. 2.3 Main program and subprogram execution

main program during auto mode of a CNC system. It is also possible to call another
subprogram from within a subprogram.

2.3 Main CNC System Functions

The main functions of a CNC system can be classified into a variety of groups such
as coordinating functions, interpolation functions, compensation functions, safety
functions, and auxiliary utility functions. These will be described in the following
sections.

2.3.1 Coordinate Systems

In CNC systems, a machine coordinate system, a workpiece coordinate system, and
local coordinate systems are defined for convenience when editing a part program
and handling machine tools.

A machine coordinate system is defined by setting a particular point of the ma-
chine tool as the origin of a coordinate system. A workpiece coordinate system is
defined by setting a particular point on the workpiece as the origin so as to make
editing a part program easier. That is, when editing a part program using one partic-
ular workpiece coordinate system, we can edit the part program by defining another
coordinate system based on the workpiece coordinate system. We call this secondary
coordinate system a “local coordinate system”. A workpiece coordinate system is set
by commanding particular G-codes (G54 to G59) and a local coordinate system is
defined by setting an offset (IP) that denotes the displacement of the local coordinate
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system from the origin of the workpiece coordinate system. Based on the origin of
the machine coordinate system, the relationship between each workpiece coordinate
and local coordinate system is illustrated by Fig. 2.4.

Local coordinate system 1

Workpiece coordinate system 1

G54 
G55 

Origin of machine coordinate system

Local coordinate system 2 

Workpiece coordinate system 2

Local coordinate system 6

Workpiece coordinate system 6

Origin of world coordinate system

G59 

G56~G58 

IP 

IP 

IP 

Fig. 2.4 Machine, workpiece and local coordinate systems

As methods to command displacements of each axis based on the specified coor-
dinate system, there are two modes, absolute programming mode (G90) and incre-
mental programming mode (G91). When absolute programming mode is used, the
end position of each axis is programmed. When incremental programming mode is
used, the relative displacement of each axis is programmed.

Besides orthogonal coordinate systems, it is also possible to use polar coordinate
systems (G15) where a radius component and angle components are used. Figure 2.5
shows a part program using the polar coordinate system and the path that is com-
manded by the part program. To use the polar coordinate system, first a work plane
is selected and then a polar coordinate system is invoked by issuing the command
G15. Thereafter, when using address X and address Y, a radius and an angle, respec-
tively, are commanded.

For part programming, it is possible to use the scaling function and the rotation
function based on the specific coordinate system. The scaling function is used for
scaling down or up the programmed workpiece shape. To command the scaling
function you use the G51 X Y Z P format in a block, wherein the X, Y, Z ad-
dress denotes the center position for scaling and is given as an absolute value. The
P address is used for the magnitude of the scaling. As G51 is a modal G-code, the
toolpaths in the following blocks are scaled P times up or down with respect to the
point determined by the values above X, Y and Z.

To rotate the specific shape in a part program, the G68 α β R format is utilized
wherein α and β denote the center position for rotation and R means a rotational
angle (+R denotes CCW and –R denotes CW). Accordingly, after declaring G68 in
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(Local coordinate system)

Y-axis

X-axis

100 mm

270o 30o
150o

N0100     G17     G90     G15 ;     XY plane, absolute coordinate, polar coordinate start
N0200     G00     X100   Y30 ;     rad. 100mm, ang. 30deg
N0201                 X100   Y150 ;   rad. 100mm, ang. 150deg
N0202                 X100   Y270 ;   rad. 100mm, ang. 270deg
N0203     G16 ;                             Polar coordinates cancel

Fig. 2.5 Polar coordinate system programming

the block, the toolpaths in subsequent blocks are rotated by the angle R with respect
to the point α , β .

If a workpiece is symmetric with respect to a specific axis, only part of the work-
piece need be programmed, the other parts are created using the G51.1 address that
utilizes a mirror image function. Figure 2.6 shows an example of usage of the mirror
function. The subprogram below is for the path in the upper right side of Fig. 2.6
and the main program below commands the whole path with mirroring of the sub-
program.

The subprogram makes the shape on the upper right. This is invoked in the original
coordinate system in line N20 of the main program. The following command, on
line N30 invokes the mirror function about the symmetry axis X=50. Line N40 then
makes the symmetric shape on the top left. Following this, on line N50 the mirror
function is again invoked to make the Y=50 symmetric axis. The next line, N60,
then calls the subprogram to make the shape on the bottom left. On line N70 the X
symmetry axis is revoked using the G50.1 command and the call of the subprogram
on line N80 makes the shape at the bottom right. Finally, on line N90 the Y symmetry
command is revoked.

2.3.2 Interpolation Functions

There are various interpolation functions that enable machine tools to move the
axes along the specific path for multi-axis machine tools. A CNC system provides
rapid movement, linear interpolation, circular interpolation, helical interpolation, and
spline interpolation functions as interpolation functions.
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Main Program Sub program

P000001; P100001;

N10 G00 G90; N210 G00 G90 X60 Y60;
N30 G51.1 X50;→ sym. X=50 N230 Y100;

N40 M98 P100001; N240 X60 Y60;

N250 M99;
N50 G51.1 Y50;→ sym. X=50, Y=50

N60 M98 P100001;

N70 G50.1 X0;→ reset X

N80 M98 P100001;

N90 G50.1 Y0;→ reset Y

N100 M30;

Y

100

N40 N20

60

50

40

1006050400

N60 N80

X

Fig. 2.6 Example of usage of mirror function

The rapid movement function (G00) is used for commanding the specific axes to
move rapidly to the programmed position. In the case of an absolute programming
mode (G90), this function makes the axes move to the commanded position from
the current position. In the case of an incremental programming mode (G91), this
function makes the axes move with the commanded incremental value and each axis
moves with the specific feedrate defined in the CNC system. Therefore, it is not
necessary to set an additional feedrate in G00.
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The linear interpolation function (G01) is used for commanding the axes to move
the tool along a line with the programmed feedrate, as shown in Fig. 2.7. G01 is
a modal G-code and the commanded feedrate is effective until a new feedrate is
commanded. Here, the feedrate means the joint speed of the axes.

(G90) G01 X200 Y200 F200 ; (G91) G01 X200 Y200 F200 ;

Y-axis

X-axis

Y-axis

X-axis

100

50

150

50

50 200 50 250

Target position

Target position

Current position Current position

0 0

Fig. 2.7 Absolute (G90) and relative (G91) displacements

The circular interpolation function is used to command tool movement along a
circle. G02 and G03 can be used for the circular interpolation function. G02 is for
commanding circular interpolation in the clockwise direction and G03 is for com-
manding circular interpolation in a counter-clockwise direction. In order to command
this function, the information summarized in Table 2.3 should be provided.

Table 2.3 Circular interpolation information summary

No. Information Command Meaning
G17 Specification of arc

on XY plane
1 Plane G18 Specification of arc

on ZX plane
G19 Specification of arc

on YZ plane
2 Rotation direction G02 Clockwise (CW) arc

G03 Counterclockwise
(CCW) arc

3 G90 Mode Two in X, Y, Z axes End position in
End pos. workpiece coord. sys.

G91 Mode Two in X, Y, Z axes Distance from start
to end

4 Distance between start Two in I, J, K axes Distance from start to
point and the arc center arc center (Sign value)
Arc radius R Radius of the arc

5 Feedrate along the arc F Feedrate along the arc

Normally, the rotation direction is defined based on the right-hand coordinate sys-
tem. That is, if the programmed plane is the XY plane, then the CW or CCW direc-
tions are defined based on when the XY plane is viewed in the positive-to-negative
direction of the Z-axis. Figure 2.8 shows the individual rotation directions in the
cases where the programmed planes are the XY, ZX, and YZ planes.
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XG17

G02

G03

X

ZG18

G02

G03

Z

YG19

G02

G03

Fig. 2.8 CW and CCW directions for the XY, ZX and YZ planes

The end point of an arc is specified by the address X, Y, and Z, and is expressed as
an absolute or incremental value according to whether G90 or G91 mode is current.
For an incremental value, the distance of the end point that is viewed from the start
point of the arc is specified by the sign value. The arc center is specified by addresses
I, J, and K for the X, Y, and Z axes, respectively as shown in Fig. 2.9. The numerical
value following I, J, or K, however, is a vector component in which the arc center is
seen from the start point, and is always specified as an incremental value irrespective
of G90 and G91 as shown below. I, J, and K must be signed according to the direction
of the arc.

The arc center can also be specified by using radius R instead of addresses I, J,
and K. In this case, there are two possibilities, where the arc is less than 180 degrees,
or where it is more than 180 degrees. When an arc exceeding 180 degrees is com-
manded, the radius must be specified with a negative value. The feedrate in circular
interpolation is equal to the feedrate specified by the F-code, and the feedrate along
the arc (the tangential feedrate of the arc) is controlled by the specified feedrate.

End

Start
Center

X
Y

i

j

End

Start
Center

Z
X

k
i

End

Start
Center

Y
Z

j

k

Fig. 2.9 Arc centers for the XY, ZX, and YZ planes

Figure 2.10 shows an actual programming example of circular interpolation in the
case of G90 mode and G91 mode, respectively.

Helical interpolation is enabled by specifying up to two other axes that move
synchronously with the circular interpolation by circular commands. The tangential
feedrate of the arc is specified by an F-code and the feedrate of the linear axis to
which circular interpolation is not applied is defined as follows:

Feedrate of linear axis = F * (Length of linear axis)/(Length of circular arc)
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50R
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i) Absolute programming mode

G92 X200 Y40 Z0 ;

G90 G03 X140 Y100 I-60 F300;

G02 X120 Y60 I-50 ;

or

G92 X200 Y40 Z0 ;

G90 G03 X140 Y100 R60 F300;

G02 X120 Y60 R50 ;

ii) Incremental programming mode

G91 G03 X-60 Y60 I-60 F300;

G02 X-20 Y-40 I-50 ;

or

G91 G03 X-60 Y60 R60 F300;

G02 X-20 Y-40 R50 ;

Fig. 2.10 Absolute and incremental circular interpolation

Cylindrical interpolation, which is useful for slotting and CAM machining on a
cylinder, is a function where the amount of movement of the rotary axis, specified
by an angle, is converted to the amount of movement on the circumference to allow
linear interpolation and circular interpolation with another axis. For cylindrical in-
terpolation, the development surface of the cylinder is regarded as a 2D shape and is
programmed as shown in Fig. 2.12.

When machining the specified shape on a cylindrical surface, the use of the 2D
developed surface on the C-axis and the Z-axis and cylindrical interpolation makes
part programming easy.
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Fig. 2.11 Helical toolpath
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Fig. 2.12 Cylindrical interpolation

Spline interpolation (G06.1) is used for machining free-form curves or surfaces
and enables the tool to be moved along the interpolated curve that passes through
the specified points, as shown in Fig. 2.13. Spline interpolation is canceled by com-
manding another G-Code (e.g. G00, G01, G02, G03) that belongs to the same G-code
group.

The typical type of spline interpolation is NURBS (Non Uniform Rational B-
Spline) interpolation and the details of NURBS interpolation will be described in
Section 3.5.
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Fig. 2.13 Spline interpolation

2.3.3 Feed Function

The feed function is used for controlling the feedrate of axes and rapid move-
ment, machining movement, path control mode (e.g. exact stop mode and contin-
uous mode), and dwell function belong to this function. The feedrate, specified by
the F-code, can be programmed as feed per min (mm/min or inch/min) or feed per
revolution (mm/rev or inch/rev).

The rapid traverse function is used for moving the tool quickly to the commanded
position and the feedrate for rapid movement is specified in the CNC system. Ma-
chining feedrate means the feedrate specified for linear interpolation or circular in-
terpolation.

To prevent a mechanical shock, acceleration/deceleration is automatically applied
when the tool starts and ends its movement. Furthermore, when the movement direc-
tion is changed between a specified block and the next block during cutting feed, the
toolpath may be curved due to the relationship between the time constant of a servo
system and the commanded feedrate. In the CNC system, linear, exponential, and
S-shape acceleration/deceleration profiles, shown in Fig. 2.14, have been typically
used. Each profile provides its specific characteristics in its own way. In general, the
linear acceleration/deceleration profile has been widely used and enables the axis
to reach at the commanded feedrate rapidly, in a simple way. Note, though, that the
S-shape profile makes the axis movement smooth and has been widely used for high-
speed machining.

Automatic acceleration/deceleration is very useful for preventing mechanical
shock. However, it results in a servo delay due to the shift of speed profile by the
acceleration/deceleration time constant and, finally, causes machining error. In par-
ticular, due to the machining error caused by automatic acceleration/deceleration of
circular interpolation, the radius of the machined circular path comes to be smaller
than that of the programmed circular path. The machining error is in inverse propor-
tion to the radius of the circle being interpolated and in proportion to the square of
the commanded feedrate.

As the command method to control the speed at the corner between the specific
block and the next block, Exact Stop (G09), Exact Stop Mode(G61), and Cutting
Mode (G64) can be used.

Y-axis

X-axis

30
20
10

0 10 20 30 40 5060 70

N10  G17 G01 X10 Y0 F200 ;
N20  X0 Y15 ;
N30  G06.1 X5 Y30 ;
N50  X20 Y15 ;
N50  X45 Y30 ;
N60  X60 Y15 ;
N70  G01 X65 Y30 ; → Spline interpolation is canceled
N80  M30 ;
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Fig. 2.14 Acceleration/deceleration profiles

In the block where Exact Stop(G09) is valid, the tool is decelerated at the end
point of the block, then an in-position check is made. Under the rapid traverse move-
ment, the tool is decelerated at the end point and an in-position check is made re-
gardless of whether or not the command Exact Stop has been issued. When the Exact
Stop Mode is specified, the tool is decelerated at the end point of a block, then an
in-position check is made. This mode is valid until G62, G63, or G64 is specified
and is used for making a right angle at the corner of a toolpath.

However, after Cutting Mode (G64) is specified, an in-position check is not made
at the end point of the next blocks. In modern CNC systems, a Look-Ahead function
is executed under Cutting Mode and this function is useful for increasing the actual
machining feedrate during execution of the part program which consists of small line
segments. The details of Look-Ahead function will be described in Chapter 3.

The dwell function (G04) is used for delaying the next execution block for the
specified time interval. As this code is a one-shot G-code, it is valid only during the
block where the function is commanded.

The threading function (G33) is used for the machining tapered threads and
threads with a constant lead. When single screw threads are machined, the threading
tool moves several times along the same path from roughing to the finishing pro-
cess. For this thread cutting, the thread tool is started after detecting one revolution
signal from the position coder attached to the spindle. Therefore, the start position
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of threading is always identical in spite of repeating machining. In this way, it is
possible to machine a single thread.

When multi-screw threads are machined, the start angle of threading is changed.
If the angle is changed by 180 degrees, a double screw thread can be machined.
If the change angle is 120 degrees, a triple screw thread can be machined. To ma-
chine multi-screw threads, the spindle speed is read from the position coder and the
speed read is converted into the feed per minute value. The tool is moved based on
the converted feedrate and the feedrate is identical during threading. However, if the
feedrate calculated from the detected spindle speed exceeds the maximum allow-
able feedrate, the actual feedrate becomes smaller than the required feedrate and it
becomes impossible to machine the thread with the required lead.

2.3.4 Tools and Tool Functions

The tool function (T-code) is used for selecting the machining tool with the specified
tool number. The specified tool is effective until another tool is selected.

The tool life management function is used for managing the usage time and wear
amount of each tool and the number of the part that is machined by each tool. This
provides functions to replace the particular tool with a specified spare tool in the
case when the usage time of the particular tool exceeds the pre-specified time or the
number of parts machined by the particular tool exceeds the predefined number.

The tool radius compensation (G40, G41 and G42) functions are used for gener-
ating a path that is offset from the programmed path by the radius of tool. As shown
in Fig. 2.15, the path followed by the tool center should be the path indicated by B,
which is separated from A by the value R, in the case when a part, indicated by A, is
machined by a tool with radius R.

Typically, the distance by which the tool is separated from the programmed path is
called the “offset” and B in Fig. 2.15 is an offset path. The code G41 commands tool-
radius compensation to the left of the tool movement direction, G42 commands tool-
radius compensation to the right of the tool movement direction, and G40 commands
cancelation of tool radius compensation. Tool compensation codes such as G41 and
G42 are used with a D address that stores the tool offset value and the tool offset
value is pre-specified by user.

Tool-radius compensation is applied differently according to the following modes.

1. Cancel mode: After power is turned on, the CNC system is reset, or M02/M30 is
executed, the status of the CNC system turns into Cancel mode. In this mode, tool
compensation mode is canceled and the path of the tool center point is the same
as the programmed path.

2. Start-Up mode: If G41 or G42 is commanded in Cancel mode, the CNC system
turns into Offset mode. (Figure 2.16).

3. Offset mode: This means the CNC operating period between the first block after
declaring the tool radius compensation to the last block before canceling the tool-
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Tool B (Tool center path)

R (Tool offset)
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A (Workpiece shape)

Fig. 2.15 Programmed path and offset path

radius compensation. During Offset mode, the offset path of the path programmed
in each block is calculated and the real machining path is made by connecting
these individual offset paths. (Figure 2.16)

4. Offset Cancel mode: In the case of commanding G40 during the Offset mode, the
tool radius compensation function comes to be canceled. (Figure 2.17).

The tool-length compensation function is for compensating the difference be-
tween the pre-defined reference tool-length and the actual tool-length. This function
is useful when the tool-length defined when editing a part program is different from
the actual machining tool-length. Accordingly, it is possible to make the part pro-
gram without knowing the actual machining tool-length. G43 and G44 are the codes
for commanding tool-length compensation, G43 and G44 denote the tool-length in-
crease and tool-length decrease, respectively. They use the value specified by the H
address as the compensation amount, which is pre-specified by the user. The cance-
lation of tool-length compensation is specified by G49.
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Fig. 2.16 Interpolation for start-up and offset modes
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Fig. 2.17 Interpolation for offset and offset cancel modes
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2.3.5 Spindle Functions

The spindle function (S-code) is for specifying the spindle speed and the spindle
speed is restricted by the maximum spindle speed specified by user. The S-code is
modal code and, therefore, the spindle speed specified by the S-code is effective
until another spindle speed is specified. The spindle speed specified by an S-code is
canceled after power on, or when the system is reset or when M30 is commanded.
During execution of a part program, change of spindle speed is limited to being less
than or equal to the specified maximum spindle speed.

The constant surface speed control function is used for rotating the spindle with
constant surface speed regardless of the position of the tool. This function is applied
for turning and the surface speed for this function is specified by the S-address. For
this function the axis along which constant surface speed control is applied should
be specified. To command constant surface speed control, the G96 command is used,
and to cancel the constant surface speed control the G97 command is used.

Typically, the spindle connected to the spindle motor is rotated at a certain speed
to rotate the workpiece mounted on the spindle. This spindle control status is referred
to as spindle rotation mode. In addition to spindle rotation mode, the spindle position
function, which turns the spindle through a certain angle, can be used to position the
workpiece mounted on the spindle at a certain angle. Also, as the spindle orientation
function is one of the spindle position functions, the spindle orientation function can
be used to make the spindle stop at a pre-determined position. By specifying the
particular angle using the S-code, it is possible to stop spindle at a particular angle.
An example of the use of the spindle orientation function is given below.

N20 M03 S1000 ;
N30 M19 ;→ spindle stops at 0.
N40 M19 S270 ;→ spindle stops at 270
N50 M03 ;→ spindle begins rotating in 1000 rpm in clockwise direction.
. . .

2.3.6 Fixed-cycle Function

The fixed-cycle function is used for executing specific machining for which more
than one block is necessary using only one block. This is useful for simplifying a
part program and the fixed-cycle code has been defined for a variety of machining
in drilling, turning, and milling as shown in Table 2.4. The usage example of this
function will be explained by using fine boring that is one of the cycle codes for
drilling.

As shown in Fig. 2.18, the fine boring cycle command, G76, moves a tool to the
reference position and stops. This command rotates the tool to a reference angle by
commanding the spindle orientation function, moves the tool by a specified amount
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Table 2.4 Operations and fixed cycle function codes

Operation G-code Operation G-code
Peck Drilling G73 Roughing G90
Reverse Tapping G74 Threading G92
Fine Boring G76 Face roughing G94
Cycle Cancel G80 Finishing G70
Drilling Cycle, G81 Turning Roughing G71
Spot Boring
Drilling Cycle, G82 Face roughing G72
Count Boring
Peck Drilling G83 Copying G73

Drilling Tapping G84 Grooving G74
Rigid Tapping G84.2 Face grooving G75
Reverse Rigid G84.3 Multiple threading G76
Tapping
Boring G85 Circular

Elongated Holes
Boring G86 Circular
Back Boring G87 Milling Circumferential

Slot
Boring G88 Facing
Boring G89 Circular Pocket

to the opposite side of the tool cutter, and finally retracts the tool upwards to avoid
damage to the machined surface.

The detailed procedure for the fine boring cycle function is given below.

1. The tool is moved to the cut start position.
2. The tool is moved rapidly to the R position.
3. With the tool movement to the Z position, boring is carried out.
4. If G76 is commanded with P address, the dwell function is executed.
5. The spindle orientation function (M19) is executed.
6. The tool is moved rapidly by the amount specified with the Q address along the

direction specified by the parameter. (In this example, it is assumed that the XY
plane is selected as the machining plane and, therefore, the tool can be moved
along the X-axis or Y-axis.)

7. The tool is rapidly retracted to the specified position. If the G99 code is effective,
tool movement position becomes the R position and if G98 code is effective, the
tool movement position becomes the cut start position.

8. The tool is moved rapidly by the length specified with the Q address to the oppo-
site direction pre-defined by parameter.

9. Tool rotation starts again.
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Fig. 2.18 Fine boring cycle movements
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Fig. 2.20 Face milling pattern and parameters

2.3.7 Skip Function

During the execution of the skip function (G31), if an external skip signal is input,
execution of the command is interrupted and the next block is executed. The skip
function is commanded with linear interpolation such as G01. The skip function is
used when the end of machining is not programmed but specified by a signal from
the machine, for example, in grinding. It is used also for measuring the dimensions
of a workpiece.

Figure 2.21 shows an example of the actual toolpath after the skip signal is de-
tected in the case when absolute command mode is effective and the programmed
path is on the XZ plane. As soon as a skip signal is detected, the tool (in this case a
touch probe is generally used) is moved to the end point of the next block regardless
of whether or not the tool reaches the end point of the current block. The feedrate
of the linear path commanded by the skip function is specified by the F-address or
a certain parameter and this feedrate is effective only on the linear path commanded
by the skip function.

2.3.8 Program Verification

The part program edited by the machine tool operator is likely to include grammat-
ical errors, logic errors, and numerical errors, such as incorrect computation of tool
position, wrong tool-offset value, and invalid feedrate and spindle speed. Therefore,
it is necessary to test the part program before executing it and the CNC system gen-
erally provides the functions listed below for immediate validation.
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G90  G31  X200.0  F100 ;
X300.0  Z100.0 ;          The tool is moved to the point of the next block.

Fig. 2.21 Skip function action

1. Dry Run: During dry run mode, the tool is moved at the feedrate specified by
a parameter regardless of the feedrate specified in the program. This function
is used for checking the movement of the tool in the case where the workpiece is
removed from the table. The tool moves at the feedrate specified by the parameter.
The feed override switch can also be used for changing the feedrate during this
mode but during automatic mode, dry run is not allowed to begin.

2. Pressing the single-block switch starts single-block mode. When the cycle start
button is pressed in single-block mode, the tool stops after a single block in the
program is executed. This function is used for checking the program block-by-
block and can be used with the dry run function and machine lock function.

3. Machine lock is used to display the change in position without moving the tool
and there are two types of machine lock: all-axis machine lock, which stops move-
ment along all axes, and specified-axis machine lock, which stops movement
along specified axes only.

2.3.9 Advanced Functions

Recently, CNC machine tools have become more accurate and faster and the func-
tionality has become more complicated. To satisfy these requirements, advanced
functions for high-speed and high-accuracy machining have been developed and ap-
plied in addition to the functions mentioned in the previous sections. The next sec-
tions describe typical advanced functions built into highly functional CNC systems.

2.3.9.1 Look Ahead

Generally, the part program for surface machining (die and mold is a typical exam-
ple of surface machining) consists of a sequential linear path with short length and
fast feedrate. In this case, if each block is executed line by line, the actual feedrate
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becomes less than the programmed feedrate and the feedrate at the corners between
one specific block and the next becomes discontinuous.

Therefore, the quality of the machined surface is degraded due to frequent accel-
eration/deceleration and the discontinuity of the feedrate and, after completing ma-
chining, grinding becomes essential. To solve this problem, the Look-Ahead function
was developed. The look-ahead function looks ahead a hundred blocks and calculates
an adequate feedrate for each axis within the maximum allowable feedrate and ac-
celeration/deceleration.

With this function, it is possible to machine the free-form surfaces and contours
of a complicated shape without stopping tool movement between successive blocks
at high speed. The concept of the look-ahead function can be easily understood by
comparing it with car driving. At night, it is difficult for the driver to see for long dis-
tances and, therefore, it is difficult to drive at the maximum allowable speed. How-
ever, during the day, a driver can see longer distances and, therefore, it is possible
to examine the road status, predict maximum feasible driving speed, and, finally, to
drive faster.

The look-ahead function calculates the maximum feasible feedrate of the speci-
fied block based on the interpreted result of the blocks that will be executed. This
function requires much computing power. Recently, with the advance of CPU power,
the number of the blocks that can be used for look ahead has grown to a thousand.
Figure 2.22 shows the feedrate profiles when the look-ahead function is applied and
when it is not and Fig. 2.22 also shows that the look-ahead function can increase the
actual feedrate.

When the look-ahead function is applied, the feedrate at the end of the starting
block (N1) is not decelerated and the programmed feedrate is kept to the programmed
feedrate. To stop at the end position of the last block (N12), the deceleration of the
feedrate starts in the preceding blocks. Therefore, the look-ahead function enables
high-speed machining compared to exact stop mode where acceleration and decel-
eration is done at the start point and the end point of each block. Accordingly, with
this function, reduction of machining time becomes possible.

Feedrate

Programmed feedrate

Look-ahead

Exact stop mode

Programmed pathN1 N2 N3 N4 N5 N6 N7 N8 N9N10N11 N12

F1

Fig. 2.22 Look-ahead mode and Exact stop profiles
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2.3.9.2 Feedforward

The conventional position control method essentially has the following error and it
is proportional to the square of the feedrate during high speed machining.

The cause of the control error is mainly based on the servo delay. In order to re-
duce the machining error, it is necessary to increase the position control loop gain.
However, increasing the position control loop gain is likely to result in machine vi-
bration and make the servo system and the machine unstable. Accordingly, as the
feedforward control method plays the role of making the servo system stable and in-
creasing the position control loop gain, it makes it possible to reduce the machining
error and achieve high-speed and high-accuracy machining.

Figure 2.23 shows the actual feedrate profiles and path traces when the feedfor-
ward control method is applied and when it is not applied. From Fig. 2.23, we can see
that when the feedforward control method is applied, the following error decreases
and the machining error obviously also decreases.

Feedrate Feedrate

Programmed feedrate

without Feedrate
forward

with Feedforward

Actual feedrate

Programmed path

Actual path
Actual path

without Feedforward with Feedforward

t t

Fig. 2.23 Feedrate profiles and path traces with and without feedforward control

2.3.9.3 NURBS Interpolation

As high-speed machining and high-accuracy machining come to be generally used,
the requirements for advanced functions to support them is growing. In particular,
when conventional CNC systems (where free curve is defined by sequential small
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line segments or arcs) are used for machining free-form surfaces, the tool moves in
a discontinuous manner and this makes the quality of the machined surface poor.
Also in this case, because a lot of program blocks are required, the size of the part
program is large. Because the size of the internal memory of CNC system is limited,
DNC (Direct Numerical Control) mode has typically been used to machine free-
form surfaces. Since the baud rate of DNC communication is restricted it becomes
impossible to raise the machining speed over a restricted specific value when a con-
ventional CNC system is used. To overcome this problem NURBS interpolation was
developed. In this section, the necessity of NURBS interpolation will be described
and the details will be given in Chapter 3.

In NURBS interpolation, NURBS curve data (e.g. control points, weights, and
knot vector) are directly input to the CNC system instead of the small line segment
data that are defined by the G01 command. As the CNC system generates inter-
polation points based on the NURBS curve data, the programmed feedrate and the
tolerance, it makes it possible to perform high-speed and high-accuracy machining.

Figure 2.24 shows the difference between the interpolation methods based on
line-segment approximation and a NURBS curve. When offline CAM software is
used the free-form curve geometry is approximated to within a pre-defined tolerance
by a set of line segments. These in turn are then subdivided into a set of shorter line
segments to give the desired feedrate. With direct NURBS interpolation in the CNC
the interpolation the feedrate and tolerance are used to determine the step length
along the curve directly to give the required speed profile.

Y

X

NURBS
curve

CAD die machining drawing
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X

Y

X

CAD die machining drawing
Y

X
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NURBS
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CAM NC machining program

CAM NC machining program

Maximum 
machining error
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X

Interpolation point

Small line segment data
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(a) Interoperation method based on small line segment approximation

(b) Interoperation method based on NURBS curve

Control point Control point
Interpolation point

Control point
Knot
Weight (Small amount of dada)

Maximum 
machining error

Fig. 2.24 Indirect and direct NURBS interpolation
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2.3.9.4 NURBS Surface Machining

For free-form surface machining, recent CAD/CAM systems include a function to
transmit the free surface data into the CNC system using the NURBS surface form.
The G-code format to specify the NURBS surface data is different according to the
CNC maker. However, despite the differences in the G-code representation method,
the data elements for representing a NURBS surface are the same. Table 2.5 summa-
rizes the status of development of NURBS interpolation functions for different CNC
makers.

Table 2.5 Controller NURBS development summary

FANUC SIEMENS OKUMA Mitsubishi Toshiba
Machine

15 Series, OSP700M TOSNUC
CNC Model 16 Series, 840D (spar H1 M700 888

18 Series, CNC)
30 Series

CPU 64bit RISC RISC RISC
Language

G-code G06.2 Type: G132 G70.0
BSPLINE G70.1

Figure 2.25 shows the G-code format for representing a NURBS curve and
Fig. 2.26 shows an example of a part program to machine a NURBS curve profile.

G06.2  P_X_Y_Z_R_K_F ;
    G06.2 : NURBS interoperation
    P : NURBS curve order
    X, Y, Z : Control point
    R : Weight
    K : Knot
    F : Feedrate

Fig. 2.25 FANUC system NURBS G-code format

In Fig. 2.26, in the block whose line index is 110, the degree of the NURBS curve
and the feedrate are specified. From the block whose line index is 110 to the block
whose line index is 350, the control points and knot vector are specified. In the case
of the NURBS curve defined in Fig. 2.26, the degree of the curve is 4, the feedrate is
10 mm/min, and the weight of all control points is 1.
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2.4 G&M-code Interpreter

As mentioned in the previous section, the interpreter of the CNC system is the soft-
ware module of the NCK unit that interprets the part program consisting of G&M-
code commands and related addresses such as S, T, and F. The interpreter consists of
a parser, an executor, a path generator, a macro executor, and an error handler. The
parser consists of a lexical analyzer, a calculator, and a sentence interpreter (YACC).
As for the software modules connected with the interpreter, there are the program
access module, which reads a program file, and the interpolator module, which gen-
erates the interpolated points of the programmed path based on the interpreted data.
Figure 2.27 shows these modules in graphic form.

N100 G05  P10000
N110 G06.2  P4  K0.  X-1.6953
    Y-.75  Z-.2358  F10
N120 K0.  X-1.6544  Z-.2313
N130 K0.  X-1.5752  Z-.2225
N140 K0.  X-1.4053  Z-.2067
N150 K.0313  X-1.3031  Z-.1982
N160 K.0781  X-1.1215  Z-.1847
    ...
N300 K.9063  X1.7085  Z-.2373
N310 K.9688  X1.75  Z-.2421
N320 K1.
N330 K1.
N340 K1.
N350 K1.
N360 G01  Y-.7188  Z-.238

Fig. 2.26 NURBS-profile G-code part program

The functionality of each module is given below.

1. Parser: this module interprets the part program block by block. The lexical inter-
preter of this module reads the block character by character and makes meaningful
words from the characters. The calculator carries out numerical operations within
the part program. The sentence interpreter retrieves the command and the related
data such as G-code, M-code, S-code, T-code, conditional branching, and iteration
loop based on the words from the lexical interpreter.

2. Executor: this module executes the functions related with the interpreted sentence
and stores the execution result in the internal memory. In addition, this module
generates the data required for executing the modal code.

3. Path Generator: This module generates the position data based on the pro-
grammed coordinates. In this module, the computation for mapping from work-
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piece coordinates to machine coordinates, tool compensation, and the axis limit
is carried out.

4. Macro Executor: this module interprets and executes macro commands included
in an NC part program. As the macro is user-defined code, the user can make
specific functions that are not provided by the CNC maker by using a macro lan-
guage, which is similar to the BASIC language.

5. Error Handler: if there is an error in a part program, the error should be noticed
and the user notified. This module is responsible for this.

IPR (Interpreter)
ParserProgram

access

LEX

Macro Executor

Path
generator

Error

IPO
(Interpolator)

CAL YAC

Fig. 2.27 Code interpreter modules

The workflow that should be executed by the interpreter with the various S/W
modules from interpreting the part program to generating the tool position is shown
in Fig. 2.28.

First, once the Cycle Start button on the MMI panel has been pushed, the inter-
preter starts pre-processing tasks such as reading the part program into the internal
memory of the CNC system block by block, interpreting the block, and storing the
interpreted data in the internal memory. During the pre-processing tasks, a cycle code
is converted into blocks that consist of G01, G02, and G03. These converted blocks
replace the cycle code and the interpreter reads and interprets the converted blocks.
The internal block memory can be defined as in Table 2.6. The block memory shown
in Table 2.6 shows the memory contents when the block whose line index is N300
has been read and where the block skip is specified and interpreted in subprogram
P9000. The interpreter reads the addresses and the following numbers specified in
the N300 block and stores the interpreted values in the related internal block mem-
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ory. In addition, the SLASH variable that denotes whether a block skip command is
on or not is set to true.

Next, the interpreter reads and performs the data on internal block memory. If
the codes M02 or M30 are executed, the part program is ‘rewound’. If the inter-
preter executes M98, the interpreter calls the subprogram whose number is the value
following the P address. If M98 is commanded together with the L address, the in-
terpreter executes the subprogram repeatedly as many times as the number following
the L address.

Further, a macro call is monitored and, if it is called, the specified macro pro-
gram is called. To make macro execution fast, it is more efficient to pre-interpret the
program called by the macro, store the program as intermediate code, and execute
this. As this method is one of the high-speed interpreting solutions, the definition
of the virtual intermediate code is necessary and an additional execution module is
required. How to call a macro program is similar to how to call a subprogram. In a
macro program call, though, it is possible to specify arguments and use the global
variables in contrast to execution of a subprogram call.

The next step is to execute the G-code. If the current block is the first block, the
interpreter initializes the local variables and controls the optional block skip com-
mand. It also performs the G-code processing such as setting the G-code type, G-
code group, modal data, and non-modal data.

The interpreter performs F-code processing where the interpreter reads the F-
code data from the internal block memory and specifies the related variable. During
F-code processing, the feedrate definition method such as feed-per-minute (mm/min,
inch/min) or feed-per-revolution and the unit of feed-override and dwell time are set.

After completion of the above-mentioned stages, the end position of a block is
computed as the final step of the interpretation. Generally, as stated earlier, various
coordinate systems are used to make editing of the part program easy for machine
tools with CNC systems.

There are three kinds of coordinate system used for machine tools; a machine
coordinate system that is the reference coordinate system of machine tool itself and
is defined with zero return, a workpiece coordinate system that is used for editing of a
part program, and a local coordinate system that is used as a reference for machining
and is specified based on the workpiece coordinate system. The machine coordinate
system is specified by G53, a workpiece coordinate system is specified by G54 to
G59, and a local coordinate system is specified by G52.

Accordingly, based on the above coordinate systems, for computation of the out-
put position of the block, first, if necessary, values in inches are converted into values
in millimeters. Incremental values are converted into absolute coordinate values. If
rotation of the coordinate system is commanded, the programmed coordinate is ro-
tated. If mirroring of the coordinate system is specified, then the mirror function is
executed. If scaling of the coordinate system is specified, then the scaling function is
performed.

The next stage is the path-modification stage where tool-length compensation and
tool-radius compensation are executed. Finally, the data used for the check limit
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IPR start

Read one block from text buffer

Perform lexical analysis

Control the optional block skip

Perform G-code processing

Perform F-code processing

Calculate incremental, polar programming

Calculate mirror, rotation, scale function

Map workpiece coordinate to the base coordinate system

Caculate tool corrections (Tool radius, Tool length)

Check limits (Software, Work area, Velocity)

Control multiple block velocity (Look ahead)

Output to the look-ahead buffer Output to the look record buffer

Execute M code for P/G control
(M02, M03, M98, M99)

Interpret cycle code
(Turning, Milling, Drilling)

Initialize variable &
local coordinate

Yes

Yes

Cycle code?

First lock?

Fig. 2.28 Flowchart for interpreter function

value such as velocity, software, and work area are transmitted into the interpolator.
Table 2.7 shows an example of the implementation of the block record memory.

The block record memory stores not only the interpreted data of a specific block
but also the data specified in the CNC system. If the look-ahead function is used,
the feedrate of the block is recalculated using the look-ahead function and the modi-
fied feedrate is stored in the additional memory for look-ahead function. The details
of the look-ahead function that is used for preventing reduction of the feedrate for
sequential small line segments will be described in Chapter 3.
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Table 2.6 Memory map for the interpreter

Field Type Value State Type Value
A double SLASH unsigned 1
B double PERCENT unsigned
C double NUMBER unsigned
D double ID unsigned
E double CHANGE[M ADD] unsigned
F double 1000 GFLAG[MAX-G] unsigned
G double 01 MFLAG[MAX-G] unsigned
H double G MODAL int
I double
J double
K double
L double
M double
N double 300
O double
P double
Q double
R double
S double 5000
T double
U double
V double
W double
X double 150
Y double 20
Z double 30

P9000
N100 G92 G96;
N200 G00 X100;
N300 M03;
/N300 G01 X150 Y20 Z30 F1000 S5000;
N400 G1 Z120;

2.5 Summary

The interpreter plays the role of converting a user-edited part program into the inter-
nal data format for execution. In order to understand the structure and the internal
behavior of the interpreter, it is necessary to understand the structure of a part pro-
gram and the commands used therein.

In a CNC system, various coordinate systems, such as the machine coordinate
system, workpiece coordinate system, and local coordinate system, are supported
for the convenience of editing a part program and setting up the machine. Also,
rotation, mirroring, and scaling of a coordinate system are provided and by using
these functions it is possible to easily edit the part program.



2.5 Summary 67

Table 2.7 Block record memory

Entity Type Comments
End point Real Array[8] Block end point
Start point Real Array[8] Block start point

Prog F value Real Feedrate
Prog S value Real Spindle speed

F limit Real Feedrate limit
S limit Real Spindle speed limit

Scaling factor Real Scale
G code group Integer Array[20] G-code group

Exact stop Integer Exact stop mark
Block number Integer Block number
Sub PG index Integer Subprogram index

Act Number PG repeat Integer Number of program
repetitions

Gear box Real Parameter for gear box
Correction active Integer Tool compensation start
Tool correction Real Tool compensation

IPO type Integer Interoperation type
G Code Integer Array[8] G-code in block

Thread flag Integer Thread start
Handwheel flag Integer Handwheel start

Handwheel direction Integer Handwheel rotation
direction

Block length Real Block length
Block pointer Pointer Array[4] Block pointer

To control tool movement along a line, an arc, a helical, or a spline path, interpo-
lation functions such as G01, G02, or G03 code, F-code for specifying the feedrate,
and S-code for specifying the spindle speed are used. To carry out the part pro-
gram where the tool shape and assembly are not considered, the tool-radius compen-
sation function and tool-length compensation function are provided. Furthermore,
the macro function, the so-called “cycle function” is provided for convenience of
editing a part program and simplification of the part program. Recently, to fulfill
requirements for high-speed machining and high-accuracy machining, various ad-
vanced functions such as the look-ahead function, feedforward control function, and
NURBS interpolation function have been applied.

Finally, the interpreter, which performs the above-mentioned functions, consists
of a parser, an executor, a generator, a macro executor, and an error handler. The
interpreter converts the block data read from the text memory into the internal data
structure. Based on the interpreted data, the position of a block is computed by ex-
ecuting various mathematical operations such as the coordinate rotation and tool
compensation and is stored in the block record memory.



Chapter 3
Interpolator

The interpolator plays the role of generator of axis movement data from the block
data generated by the interpreter and is one of the key components of CNC, reflecting
its accuracy. In this chapter, the various software interpolators will be introduced and
their strengths and weaknesses will be described. In addition, a NURBS interpolator,
which is an advanced interpolation method, will be described and the implementation
algorithm will be introduced.

3.1 Introduction

A CNC machine generally has more than two controlled axes to machine complex
shapes. Two kinds of control can be carried out: The point-to-point control method
is used to move the axis to the desired position; and the contour control method is
used to move the axis along an arbitrary curve.

In order to execute these control methods successfully, tool movement should be
divided into components corresponding to each axis; the locus of the tool is created
through combining the individual displacements for each axis.

For example, if a tool should move from point P1 to P2 at feedrate Vf in the
XY plane, as shown in Fig. 3.1, the interpolator divides the overall movement into
individual displacements along the X- and Y-axes based on the pre-defined feedrate.
Finally, the velocity command blocks for the two axes are generated as shown in
Fig. 3.1.

Therefore, the interpolator requires the following characteristics so that it can
generate the displacement and speed successfully for multiple axes from the part
shape and the pre-defined feedrate.

1. The data from the interpolator should be close to the actual part shape.
2. The interpolator should consider the limitation of speed due to the machine struc-

ture and the servo specifications while calculating velocity.

69
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Fig. 3.1 The basic concept of an interpolator

3. The accumulation of interpolation error should be avoided in order that the final
position should coincide as closely as possible to the position commanded.

The interpolator can be classified as either a hardware interpolator or a software
interpolator by considering the implementation method. The hardware interpolator,
which consists of various electric devices, was widely used until CNC was devel-
oped. However, today, interpolators implemented using software are used in modern
CNC systems. The concept of the software interpolator originates from that of the
hardware interpolator and the hardware interpolator is limited to control simple sys-
tems.

3.2 Hardware Interpolator

The hardware interpolator carries out the computation of interpolation and generates
pulses by using an electric circuit. In the hardware interpolator, high-speed execution
is possible, but it is difficult to adapt new algorithms or modify algorithms. In NC,
the computation of interpolation and feedrate depends on hardware. However, the
dependency on hardware has been gradually decreased because of the introduction
of computer numerical control (CNC) systems.

The typical method for hardware interpolation uses a DDA(Digital Differential
Analyzer) integrator. The method using the DDA integrator is transformed into a
software version and can be applied to modern CNC. In this section, the DDA inte-
grator will be introduced and the hardware interpolation method using a DDA inte-
grator will be addressed.
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3.2.1 Hardware Interpolation DDA

The hardware interpolator uses a DDA based on the principle of a numerical inte-
gration. A DDA is a digital circuit operated as a digital integrator that is similar to
integration by an OP amplifier in an analog circuit.

Understanding of the concept of integration should be preceded by knowledge
of the principle of interpolation. Given the velocity function V (t), the displacement
S(t) can be approximated by summing the areas of the thin rectangles beneath the
velocity curve as shown in Fig. 3.2.

V

t

V(t)

∆t

∆

Fig. 3.2 Velocity curve and approximating rectangles

S(t) =
∫ t

0
V ·dt ∼=

k

∑
i=1

Vi ·Δ t (3.1)

where, Δ t stands for an iteration time interval. If the displacement at time t = k ·Δ t
is defined as Sk, Equation 3.1 can be rewritten as Eqs. 3.2 and 3.3.

Sk =
k−1

∑
i=1

Vi ·Δ t +Vk ·Δ t (3.2)

or

Sk = Sk−1 +ΔSk (3.3)

where ΔSk is defined in Eq. 3.4.

ΔSk = Vk ·Δ t (3.4)

The following three processes are necessary for integration:
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1. Calculate current velocity by velocity summing at the previous time unit and the
velocity increment at the current time unit by using Eq. 3.5.

Vk = Vk−1 +ΔVk (3.5)

2. Calculate the distance increment at the current time unit using Eq. 3.4.
3. Calculate the total displacement by summing the displacement at the previous

time unit and the distance increment at the current time unit using Eq. 3.3.

f =
1
Δ t

(3.6)

The above integration process is repeated for every constant time interval and the
iteration frequency is given by Eq. 3.6.

The DDA integrator as mentioned above can be realized using hardware, and the
hardware structure and representation symbol are shown in Fig. 3.3.

Iteration
clock f

Overflow
∆S

n-bit binary adder
Q register

+∆V

 ∆V

+∆V
 ∆V

∆Sup/down counter
V register

f

Fig. 3.3 DDA concept and representation symbol

The DDA integrator consists of two n-bit registers. The Q register is an n-bit
binary adder and the V register is an n-bit up/down counter. The following is the
integration process of a DDA integrator by using each component.

First, Eq. 3.5 is applied when the V register is updated by ΔV , being 0 or 1. This
is added to the lowest bit of the V register whenever the DDA integrator is iterated.
The value of the Q register and the value of the V register are summed up by binary
addition. If the value of the Q register is greater than (2n−1), which is the maximum
value of an n-bit register, overflow occurs and this overflow becomes ΔS, which is
the output of the DDA integrator.

Because the DDA integrator itself has no function for summing ΔS, an additional
counter circuit is required in order to realize the second step of integration repre-
sented by Eq. 3.3. In mathematical form, the displacement ΔS is as in Eq. 3.7.

ΔSk = 2−n ·Vk (3.7)

Equation 3.7 can be written in the style of Eq.3.4 by utilizing Eq. 3.6, which gives
Eq. 3.8.
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ΔSk = 2−n ·Vk · ( f ·Δ t) =
f

2n ·Vk ·Δ t (3.8)

Accordingly, the average frequency for generating ΔS can be written as Eq. 3.9.

f0 =
(
ΔS
Δ t

)
k
=

f
2n ·Vk (3.9)

In the following, the bandwidth of the integration process is proportional to the
frequency, f , and the velocity, V , while it is inversely proportional to 2n. (where n is
the length of a register and determines the resolution of the integration. Therefore,
the larger the value of n, the higher the accuracy of the integration.)

3.2.2 DDA Interpolation

DDA hardware interpolation, which calculates the displacement and velocity of each
axis based on part shape and command velocity, can be implemented using a DDA
integrator. Figure 3.4 shows the circuit for a linear interpolator and a circular inter-
polator.

Linear interpolation means controlling the linear movement from a start position
to an end position. In general, linear interpolation is implemented by simultaneously
controlling two axes on a 2D plane or three axes in 3D space. However, in this book
linear interpolation on a 2D plane will be used as an introduction in order to simplify
the discussion.

When 2D linear interpolation is carried out, the most important thing is the syn-
chronization of two axes with respect to the velocity and the displacement. For ex-
ample, assume that the X-axis moves at maximum A BLU and Y-axis moves at max-
imum B BLU, as shown in Fig. 3.4a. In this case, the DDA hardware interpolator
should generate ‘A’ pulses for the X-axis movement and ‘B’ pulses for the Y-axis
movement. The frequency ratio of A to B should be maintained as constant.

A DDA hardware interpolator that is able to satisfy these conditions can be de-
signed as shown in Fig. 3.4b. In this circuit, which consists of two DDA integrators,
the X-axis and Y-axis are separated and can be executed simultaneously using identi-
cal clock signals. The total displacement of each axis is stored in the V register of the
corresponding DDA integrator; The V register of the DDA integrator for the X-axis
is set to the value ‘A’ and the V register of the DDA integrator for the Y-axis is set
to the value ‘B’. The overflow from each DDA integrator is generated as in Eq. 3.10
and Eq. 3.11. The overflow is fed to the input of the position control loop.

ΔSx =
(

f
2n

)
·A ·Δ t (3.10)

ΔSy =
(

f
2n

)
·B ·Δ t (3.11)
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Fig. 3.4 DDA hardware interpolator

In order to interpolate the circle shown in Fig. 3.4c, a start position, an end po-
sition, a radius, and a vector from the start position to the center of the circle are
needed. The circular interpolator should satisfy the following equations:

(X−R)2 +Y 2 = R2 (3.12a)

X = R(1− cosωt), Y = Rsinωt (3.12b)

where R is the radius of the circle and ω is the angular velocity.
By differentiating Eq. 3.12, the velocity for each axis can be calculated and are

given by Eq. 3.13 or Eq. 3.14.

Vx =
dX
dt

= ωR · sinωt (3.13a)

Vy =
dY
dt

= ωR · cosωt (3.13b)

dX = ωR · sinωt ·dt (3.14a)

ωR · sinωt ·dt =−d(R · cosωt) (3.14b)
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dY = ωR · cosωt ·dt (3.15a)

ωR · cosωt ·dt = +d(R · sinωt) (3.15b)

Based on Eq. 3.14 and Eq. 3.15, above, it is possible to design the DDA hardware
interpolator. If R ·sinωt is assigned to the V register of the DDA integrator for the X-
axis and R · cosωt is assigned to the V register of the DDA integrator for the Y-axis,
the output of each DDA integrator can be represented respectively by the right side
of Eq. 3.14a and Eq. 3.15a. Considering Eq. 3.12b, the output of the DDA integrator
for the X-axis can be used as the input of the summer of the DDA integrator of the X-
axis. Based on the above concept, the circuit for a circular interpolation is designed
by utilizing the two DDA integrators that have cross-connected inputs and outputs,
as shown in Fig. 3.4d.

The behavior of the circuit for clockwise circular interpolation is shown in
Fig. 3.4d and the description is as follows. Assume that the radius (R) of the cir-
cle is 15, the initial value of the vector (i, j) from the start position of the circle to
the center is (R,0), and the length (n) of the register is 4. In this case, the value and
the output of the registers can be summarized for the iteration period. Because the
length of the registers is set to be n=4, the registers of the DDA for the X- and Y-axes
can store 15, maximum. Furthermore, because the start position of a circle is (R, 0),
the initial value of the V registers of the DDA for the X- and Y-axes are 15 and 0,
respectively. In the first iteration, the initial value of the V register of the DDA for the
X-axis is added to the Q register. Because overflow does not occur in the Q register,
the DDA for the Y-axis is not changed.

In the second iteration, the value of the V register of the DDA for the X-axis is
added to the Q register. Now, overflow occurs in the Q register and the value of the Q
register becomes 14 (30−16 = 14). Because of the overflow from the X-axis DDA,
the V register of the Y-axis DDA comes to have value 1. By adding the value of the
V register and the value of the Q register, the Q register comes to have the value 1.

As this process is repeated, due to the overflow from the DDA for the X-axis, the V
register for the Y-axis is incremented. On the other hand, due to the overflows from
the DDA for the Y-axis, the V-register of the DDA for the X-axis is decremented,
resulting in circular interpolation. In this process, the overflow from the DDA for the
X-axis is the movement signal along the X-axis at 1 BLU and the overflow from the
DDA for the Y-axis is the movement signal along the Y-axis at 1 BLU. In Table 3.1,
the total number of overflows occurring for the DDA for the X-axis is 15 and also for
the DDA for the Y-axis, as indicated by the values for ΔS.

3.3 Software Interpolator

With the reduction of the price and size of PCs, a software interpolation method has
appeared in which interpolation is carried out using a computer program instead of a
logic arithmetic hardware device. Various algorithms have been introduced for soft-
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Table 3.1 DDA integrator

Iteration DDA Integrator DDA Integrator
step for X-axis for Y-axis

V Q ΔS V Q ΔS
0 15 0 0 0
1 15 15 0 0
2 15 14 1 1 1
3 15 13 1 2 3
4 15 12 1 3 6
5 15 11 1 4 10
6 15 10 1 5 15
7 15 9 1 6 5 1
8 14 7 1 7 12
9 14 5 1 8 4 1

10 13 2 1 9 13
11 13 15 9 6 1
12 12 11 1 10 0 1
13 11 6 1 11 11
14 11 1 1 12 7 1
15 10 11 12 3 1
16 9 4 1 13 0 1
17 8 12 13 13
18 8 4 1 14 11 1
19 7 11 14 9 1
20 6 1 1 15 8 1
21 5 6 15 7 1
22 4 10 15 6 1
23 3 13 15 5 1
24 2 15 15 4 1
25 1 0 15 3 1

ware interpolation and Table 3.2 summarizes the typical algorithms for the reference
pulse interpolator and the reference word interpolator (Sampled-Data interpolator).

In the reference pulse method, a computer generates reference pulses as an exter-
nal interrupt signal and the generated pulses are directly forwarded to the machine
drive. Also in this method, 1 pulse denotes 1BLU of axis.

Table 3.2 The type of a software interpolator

Reference Pulse Method Sampled Data Method
Software DDA Interpolator Euler Interpolator

Stairs Approximation Interpolator Improved Euler Interpolator
Direct Search Interpolator Taylor Interpolator

Tustin Interpolator
Improved Tustin Interpolator

Figure 3.5 shows the structure and information flow for the reference pulse
method. A CNC system based on the reference pulse method includes an Up/Down
Counter. This counter compares the reference pulse from an interpolator with the
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feedback pulse from an encoder, calculates the position error from the comparison
result, and finally, the calculated position error is input to a drive. In this structure,
the total of the generated pulses determines the position of an axis and the frequency
of pulses determines the speed of an axis.

The interrupt frequency determines the speed of the axis in this method, so simple
programs and a fast CPU are essential for high-speed operation. The DDA (Digital
Differential Analyzer) algorithm, Stairs Approximation algorithm, and Direct Search
algorithm are suitable for this interpolation method.
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Up-Down

Counter
DAC

Machine

Drive
Axis of Motion

Encoder
Feedback Pulses

Fig. 3.5 Software interpolator based on a reference pulse method

In the Sampled-Data interpolation method, Fig. 3.6, the interpolation is executed
in two stages unlike the reference pulse method. In the first stage, an input contour
is segmented into straight line segments within an allowable tolerance and, in the
second stage, the approximating line segments are interpolated and the interpolation
result sent to the related axis. In general, the first stage is called rough interpolation
and the second stage fine interpolation. When the performance of microprocessors
was low, a software interpolator carried out the rough interpolation and a hardware
interpolator was used for the fine interpolation. The Euler method, Taylor method,
and Tustin method are typical algorithms for rough interpolation.

Table 3.3 summarizes the comparison between the above-mentioned software in-
terpolators. In the case of the reference pulse interpolation method, the feedrate of
an axis is subject to the CPU speed but, compared to the Sampled-Data interpolation
method, control with higher accuracy is possible. The Sampled-Data interpolation
method is suitable for a high-speed interpolator so that there is no limitation regard-
ing the speed of an axis. However, because line approximation is used when circles
are interpolated, calculation errors, rounding errors, and accumulation errors at the
connection positions between lines occur and these errors result in large contour
error. In addition, this method complicates the control loop and requires a larger in-
ternal memory compared with the reference pulse method to store the approximating
line segments.
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Fig. 3.6 Software interpolator based on a sampled-data method

Table 3.3 Reference pulse and Sampled-Data methods comparison

Reference Pulse Method Sampled-Data Method
Descri- The distance to go is The coordinate points to
ption computed with external go per unit sampling time

reference pulses and the are computed and the calc-
calculated pules are fed ulated data is transmitted
to each axis. to each axis.

Strengths Adequate for high-accuracy Adequate for high-speed
machining. machining.

Weakness Inadequate for high-speed Inadequate for high-
machining. accuracy machining.

Remarks Because the feedrate of each
axis depends on the frequency
of external interrupt signal, a
high performance CPU is
required.

3.3.1 Software Interpolation Methods

In this section, the concepts and the flowcharts for the DDA algorithm, the Stairs
Approximation algorithm, and the Direct Search algorithm will be addressed. These
are typical algorithms for the reference-pulse method.

3.3.1.1 Software DDA Interpolator

Software DDA interpolation algorithms originate from hardware DDAs and their ex-
ecution procedure is the same as the behavior of hardware DDAs. Figure 3.7 shows
the flow chart for a software DDA interpolation algorithm and Fig. 3.7a and Fig. 3.7b
respectively show linear interpolation and circular interpolation. In Fig. 3.7a, the
variable L is a linear displacement and the variables A and B denote the displace-
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Fig. 3.7 Software DDA interpolator

ment of the X- and Y-axes, and the initial value of variables Q1 and Q2 is zero. In
Fig. 3.7b, the initial values of variables are the same as those for linear interpolation,
the variable R is the radius of the circle, and the variables P1 and P2 give the center
position when the start point of the circle is the origin of the coordinate system.

The following is an example of a software DDA interpolation algorithm and an
example part program is below. The length unit of the example part program is BLU
and a speed unit is BLU per second.

G01 X0.Y10.F10
G02 G90 X10. Y0. I0. J-10. F10

The example part program denotes the circular movement in a clockwise direction
in the first quadrant and Fig. 3.8 shows the result of the interpolation.

3.3.1.2 Stairs Approximation Interpolator

The Stairs Approximation algorithm, termed an incremental interpolator, determines
the direction of the step every BLU interval and sends the pulse to the related axis.
In this section, the Stairs Approximation interpolator for a circle will be addressed
and the algorithm for a line can be easily determined from the algorithm for a circle.
Figure 3.9 shows how the Stairs Approximation interpolator for a circle behaves in
the case that the commanded circular movement is in the clockwise direction in the
first quadrant with respect to the center of the circle.
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Fig. 3.8 Result of interpolation by using software DDA algorithm
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Fig. 3.9 The behavior of the Stairs Approximation interpolation algorithm

Assume that the tool reaches the position (Xk,Yk) after the ith iteration. In this
algorithm, the variable Dk is calculated by Eq. 3.16.

Dk = X2
k +Y2

k −R2 (3.16)

The direction of a step is determined based on Dk, the commanded circular direc-
tion, and the quadrant where movement is done. For example, if the circular move-
ment is carried out in a clockwise direction in the first quadrant, the algorithm exe-
cuted is as below.

1. Dk < 0: This case means that the position (Xk,Yk) is located on the inside of a
circle and, in this case, the step moves in the positive direction of X-axis.

2. Dk > 0: This case means that the position (Xk,Yk) is located on the outside of a
circle and, in this case, the step is moved in the negative direction of the Y-axis.
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3. Dk = 0: One of the above rules can be arbitrarily selected and applied.

After one step is completed by applying the above rules, the position (Xk+1,Yk+1)
is updated and the procedure repeated until the tool reaches the position commanded,
(Xf ,Yf ).

Table 3.4, shows the displacement values for the eight cases of the Stairs Approx-
imation algorithm, which can calculate a total of eight different cases according to
the quadrant.

Table 3.4 Eight stairs for arc path

No. Quadrant Direction D < 0 D > 0
1 1 CW +X –Y
2 1 CCW +Y –X
3 2 CW +Y +X
4 2 CCW –X –Y
5 3 CW –X +Y
6 3 CCW –Y +X
7 4 CW –Y –X
8 4 CCW +X +Y

This algorithm requires a small amount of computation and less memory space.
However, numerous iterations are required and N, the number of iteration steps, can
be calculated using Eq. 3.17.

N = |X0−Xf |+ |Y0−Yf |, (X0,Y0) : Start position (3.17)

For example, in the case of interpolating a quarter circle with radius R, the to-
tal number of iterations, N, is 2R. In order to maintain the command velocity Vl

(BLU/second), the interpolation should be repeated with frequency f0 according to
Eq. 3.18.

f0

Vl
=

2R
πR/2

=
4
π

(3.18)

However, an improved algorithm is proposed because the above-mentioned Stairs
Approximation algorithm has some problems. In the improved Stairs Approximation
algorithm, Eq. 3.16 is changed to Eq. 3.19 by adding one more index.

Di, j = X2
i +Y2

j −R2 (3.19)

In Eq. 3.19, i and j respectively denote the number of steps along the X-axis and
the Y-axis. When one step is added along the X-axis, Eq. 3.19 is changed to Eq. 3.20.

Di+1, j = (Xi + 1)2 +Y 2
j −R2 (3.20)

= Di, j + 2Xi + 1 = Di, j +ΔXi

ΔXi+1 = ΔXi + 2
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Figure 3.10 shows the behavior of the Stairs Approximation algorithm.

G01 X0.Y10.F10
G02 G90 X10. Y0.(BLU) I0. J-10.(BLU) F10(BLU/sec)

The following is an example of the Stairs Approximation interpolation algorithm.
The part program, below, is the same as that for the software DDA interpolation
algorithm and denotes circular movement in a clockwise direction in the first quad-
rant. Figure 3.11 and Table 3.5 show the result of the algorithm for the example part
program.

Table 3.5 Results of Stairs Approximation interpolation algorithm

step D Δx Δy ΔXf ΔYf X Y
0 0 1 –19 10 10 0 10
1 1 3 –19 9 10 1 10
2 –18 3 –17 9 9 1 9
3 –15 5 –17 8 9 2 9
4 –10 7 –17 7 9 3 9
5 –3 9 –17 6 9 4 9
6 6 1 –17 5 9 5 9
7 –11 11 –15 5 8 5 8
8 0 13 –15 4 8 6 8
9 13 15 –15 3 8 7 8

10 –2 15 –13 3 7 7 7
11 13 17 –13 2 7 8 7
12 0 17 –11 2 6 8 6
13 17 19 –11 1 6 9 6
14 6 19 –9 1 5 9 5
15 -3 19 –7 1 4 9 4
16 16 21 –7 0 4 10 4
17 9 21 –5 0 3 10 3
18 4 21 –3 0 2 10 2
19 1 21 –1 0 1 10 1
20 0 21 1 0 0 10 0

The equation being approximated in this case is:

Di, j = X2
i +Y 2

j −102, (X0,Y0) = (0,10),(x f ,Yf ) = (10,0)

3.3.1.3 Direct Search

One of the weaknesses of the Stairs Approximation algorithm is that a lot of itera-
tions are required because simultaneous movement of axes is not considered in the
algorithm. Furthermore, possible error conditions are not considered when the in-
terpolated position is decided. As an alternative, the Direct Search algorithm, which
is introduced in this section, carries out optimal interpolation because the algorithm
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Fig. 3.10 Flowchart for the Stairs Approximation interpolation algorithm
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Fig. 3.11 Stairs Approximation

searches through all possible directions and finds a direction with the minimum path
error. Basically, the Direct Search algorithm is very similar to the Stairs Approxi-
mation algorithm. However, the Direct Search algorithm considers the simultaneous
movement of axes based on path error, in contrast to the Stairs Approximation algo-
rithm.

In the Direct Search algorithm, it is known that the variable Di, j in Eq. 3.19 is
proportional to the radial error Ei, j as in Eq. 3.21. Evaluation of the radial error can
be replaced by evaluation of Di, j.
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Di, j
∼= (2R)Ei, j (3.21)

The Direct Search algorithm searches all possible points that can move from the
present position, and finds a point having minimum error by estimating Di, j at pos-
sible points. The possible points are decided based on the commanded movement
direction and a quadrant, as shown in Table 3.4. For example, when clockwise circu-
lar movement in the first quadrant is commanded, three cases should be considered:
1) increasing 1 BLU for the X-direction, 2) decreasing 1 BLU for the Y-direction, and
3) increasing 1 BLU for the X-direction and simultaneously decreasing 1 BLU for
the Y-direction. The third case is different from the Stairs Approximation algorithm.

The Di, j for each case is evaluated and the case with smallest absolute value is se-
lected for movement. Figure 3.12 shows the flow chart of the Direct Search algorithm
for clockwise circular movement in the first quadrant.
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Fig. 3.12 Direct search flowchart
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The maximum error of the Direct Search is 1/2 BLU and the accuracy of this
algorithm is better than that of the Stairs Approximation algorithm. However, the
Direct Search algorithm requires as many as N =

√
2 iterations in order to interpolate

a circular arc with radius R than by using the Direct Search algorithm. The number of
iterations is 30% smaller than that of the Stairs Approximation algorithm and about
20% smaller than that of the DDA software algorithm. The maximum allowable
radius is the same as that for the Stairs Approximation algorithm. In order to hold the
command velocity Vl (BLU/second), the algorithm should be repeated at frequency
F given in Eq. 3.22.

F =
2
√

2
π

V (3.22)

The following is an example of the Direct Search algorithm. The code sequence
below is identical to that used to illustrate the DDA software interpolator and repre-
sents clockwise circular movement in the first quadrant. Figure 3.13 and Table 3.6
show the results of the Direct Search algorithm.

G01 X0.Y10.F10
G02 G90 X10. Y0.(BLU) I0. J-10.(BLU) F10(BLU/second)

The equation being interpolated is:

Di, j = X2
i +Y 2

j −102, (X0,Y0) = (0,10), (Xf ,Yf ) = (10,0)

Table 3.6 Direct Search
step D D1 D2 D3 Δx Δy ΔX f ΔY f X Y

0 0 1 –19 10 10 0 10
1 1 1 –19 –18 3 –19 9 10 1 10
2 4 4 –18 –15 5 –19 8 10 2 10
3 9 9 –15 –10 7 –19 7 10 3 10
4 3 16 –10 –3 9 –17 6 9 4 9
5 6 6 –20 –11 11 –17 5 9 5 9
6 0 17 –11 0 13 –15 4 8 6 8
7 –2 13 –15 –2 15 –13 3 7 7 7
8 0 13 –15 0 17 –11 2 6 8 6
9 6 17 –11 6 19 –9 1 5 9 5

10 –3 25 –3 16 19 –7 1 4 9 4
11 9 16 –10 9 21 –5 0 3 10 3
12 4 30 4 25 21 –3 0 2 10 2
13 1 25 1 22 21 –1 0 1 10 1
14 0 22 0 21 21 1 0 0 10 0
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Fig. 3.13 Direct search results

3.3.1.4 Reference Pulse Interpolator Algorithms

Maximum allowable radius, consistency of feedrate, maximum allowable feedrate,
and maximum error can be considered as performance indices for evaluating various
reference-pulse interpolator algorithms. Table 3.7 summarizes the performance and
characteristics of the above-mentioned algorithms considering these criteria. Many
tests have been carried out for the various reference-pulse interpolation algorithms
and Table 3.7 shows the result of these tests.

Table 3.7 Reference-pulse interpolation method comparison

Method Rmax +1 Emax N V Vmax Vmin

DDA 2n−2 1 (π/2)R F F F
Stairs 2n−2 1 2R (π/4)F F (1/

√
2)F

DSM 2n−2 1/2
√

2R (π/2
√

2)F
√

2F F

Consequently, all algorithms hold the consistency of feedrate during linear inter-
polation but only the DDA software interpolator algorithm can hold consistency of
feedrate for Vmax and Vmin. Note also that the Stairs Approximation algorithm allows
the greatest maximum feedrate.

3.3.2 Sampled-Data Interpolation

As previously mentioned, the Sampled-Data interpolation method is typical for mod-
ern CNC. In this method, the algorithm is repeated every constant time interval.
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3.3.2.1 Reference Word Interpolator for Lines

In the reference word algorithm, linear interpolation is very simple compared with
circular interpolation. Figure 3.14 shows the concept and flowchart for linear inter-
polation.

(a) (b)
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Fig. 3.14 Reference word algorithm – linear interpolation

The fundamental idea of this algorithm is segmentation of the path by the inter-
polation time, Tipo. At each sampling time the interpolated point can be defined as in
Eq. 3.23 wherein the displacement of each axis is given by Eq. 3.24.

xi+1 = xi +Δx yi+1 = yi +Δy (3.23)

Δx = ΔL · cosθ = ΔL
xe− xs

L
(3.24)

Δy = ΔL · sinθ = ΔL
ye− ys

L

ΔL = V ·Tipo (3.25)

L =
√

(xe− xs)2 +(ye− ys)2 (3.26)

V = V0× f eed override (3.27)
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As shown in Eq. 3.25, the line segment ΔL depends on velocity V . Velocity V
is defined by Eq. 3.27 when the command velocity V0 defined in a part program is
compensated for by feed override.

Figure 3.14 represents the flow chart for the above-mentioned interpolation proce-
dure. Figure 3.14a shows the total linear path to move, interpolation points to move
to at each interpolation time, and axial increment at every interpolation time. Fig-
ure 3.14b shows the flow chart for the interpolation procedure and the equations for
generating interpolated points and axial increments. Figure 3.14c shows axial incre-
ments for every interpolation time step as a 2D graph.

N = int

(
L
ΔL

)
(3.28)

Here, the total number of iterations for the interpolation is defined by Eq. 3.28.
Axial increment is transferred to the ring buffer (FIFO buffer) every interpolation
time step and axial increment is used as input for acceleration/deceleration control.
In general, because constant feedrate is allocated to line blocks in the part program,
Δx and Δy hold constant velocity. However, if feed override is applied, the axial
increment can be changed every interpolation time.

At this moment, one question occurs. When the length of the line path, L, is not
exactly N times the displacement per interpolation time ΔL, where N is an integer,
how should the residual length be interpolated? The typical method for processing
the residual length is to allocate the remainder evenly to every interpolation time.
For example, if the residual length is 10, then add 1 to every interpolation value
from the first to the tenth interpolation time. However, this method requires a heavy
computational power although the velocity is maintained constant. Therefore, the
best and real practical way of handling the residual length is simply to add all the
residual length on the interpolation value at the last interpolation time. This does not
affect the machining accuracy at all.

3.3.2.2 Reference Word Interpolator for Circles

During circular interpolation, tangential velocity, V should be held on the circular
path. The individual velocity of the axes is defined by Eq. 3.29.

Vx(t) = V sinθ (t) Vy(t) = V cosθ (t) (3.29)

where θ (t) = (Vt/R)

The velocity of the axes, (Vx,Vy), is computed by a circular interpolator, and fed
to the closed loop of position control as a reference input. In the reference word
interpolator for a circle, a circular path is approximated by small line segments. The
larger the number of line segments, the better the accuracy of interpolation. However,
more computation power is required as the number of iterations increases. Therefore,
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it is necessary to optimize the number of line segments so that the results of the path
error comes to be within 1 BLU.

Figure 3.15 shows the relationship between two successive interpolated points for
the reference word interpolator for a circle. In the reference word interpolator for a
circle, the iteration step can be expressed using the angle α . The size of this angle α
is a key factor for interpolation. Therefore, various algorithms have been proposed
to determine angle α .

Y

X

(Xi+1, Yi+1)

(Xi, Yi)
DYi

DXi

θi+1

α

θi

Fig. 3.15 Reference word – circular interpolation

Equation 3.30 is the mathematical relationship between two successive interpo-
lated points. The conditions for reference word interpolation of a circle are given in
Eq. 3.31.

cosθ (i+ 1) = Acosθ (i)−Bsinθ (i) (3.30)

sinθ (i+ 1) = Asinθ (i)+ Bcosθ (i)

where,

A = cosα B = sinα (3.31)

θ (i+ 1) = θ (i)+α

The final position of the segment (X(i + 1), Y (i + 1)) can be approximated as in
Eq. 3.32.
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X(i+ 1) = R(i)cosθ (i+ 1) Y (i+ 1) = R(i)sinθ (i+ 1) (3.32)

From Eq. 3.30 and Eq. 3.32, Eq. 3.33 is derived. Equation 3.33 shows that it is
possible to calculate successive interpolated points by using the current interpolated
point,

X(i+ 1) = AX(i)−BY(i) Y (i+ 1) = AY (i)+ BX(i) (3.33)

Reference word interpolation algorithms that are introduced in this book depend
on the above equations and the differences between algorithms are the methods used
to determine angle α and how to approximate A and B from Eq. 3.33.

If angle α is determined regardless of the type of algorithm, the following inter-
polation routine is executed every iteration. The start position and the velocity are
provided by a part program.

Using Eq. 3.33 and an initial interpolated point (X(i),Y (i)) the next interpolated
point (X(i + 1),Y (i + 1)) can be computed. The length of the line segment is com-
puted using Eq. 3.34 and Eq. 3.35 gives the velocities.

DX(i) = X(i+ 1)−X(i) = (A−1)X(i)−BY(i) (3.34)

DY (i) = Y (i+ 1)−Y(i) = (A−1)Y(i)+ BX(i)

Vx(i) =
VDX(i)
DS(i)

Vy(i) =
VDY (i)
DS(i)

(3.35)

where DS(i) =
√

DX2(i)+ DY2(i)

DX(i) and DY (i) are, respectively, the increments along the X- and Y- axes. Vx(i)
and Vy(i) are the velocities, called reference words, for the X- and Y-axes respec-
tively. These values are transmitted to the acceleration/deceleration control routine
via a ring buffer. Using these, the interpolation routine updates the current interpo-
lated point (X(i),Y (i)).

3.3.2.3 Radial Error and Chord Height Error

Two kinds of an error occur when a circle is approximated by line segments, as
shown in Fig. 3.16; radial error (ER) and chord height error (EH).

If the radius of a circle is R, the radial error, ER, is computed using Eq. 3.36.

ER(i) = R(i)−R =
√

X2(i)+Y 2(i)−R (3.36)
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Fig. 3.16 Radial and chord height errors

ER is an error from a truncation effect. ER can be approximated by coefficients
A and B and this error is accumulated with iteration. At the ith iteration, ER can be
computed approximately using Eq. 3.37.

ER(i) = i(C−1)R (3.37)

where C =
√

A2 + B2

Unlike radial error ER, chord height error, EH, is not accumulated. EH is com-
puted using Eq. 3.38. EH can be written as Eq. 3.40, which includes coefficient A,
by using Eq. 3.39.

EH(i) = R−R(i)cos
α
2

(3.38)

cos
α
2

=

√
1 + cosα

2
=

√
1 + A

2
(3.39)

EH(i) = R−R(i)

√
1 + A

2
(3.40)

Based on the above, α should be determined such that the value of ER or EH
does not exceed a value equivalent to 1 BLU.

In the following sections, various reference word interpolation algorithms based
on the above-mentioned basic idea will be addressed.



92 3 Interpolator

3.3.2.4 Euler Algorithm

In the Euler algorithm, cosα and sinα are approximated by first-order Taylor series
expansion. A and B in Eq. 3.31 are written as in Eq. 3.41.

A = 1,B = α (3.41)

Since the series expansion is truncated, a radial error ER influences the accuracy
of the algorithm. The maximum error of this algorithm is calculated using Eq. 3.42
and, if α is small, the maximum error can be approximated using Eq. 3.43.

ERmax = (π/2α)(
√

1 +α2−1)R (3.42)

ERmax
∼= (π/4)αR (for small α) (3.43)

If a quarter circle is interpolated using this algorithm, angle α is computed from
Eq. 3.44 and for interpolating a quarter circle, Eq. 3.45 gives the number of iteration
steps.

α = 4/(πR) (3.44)

N = π2R/8 (3.45)

3.3.2.5 Improved Euler Algorithm

The Improved Euler algorithm is similar to the Euler algorithm but differs in that
X(i+1) is used for calculating Y (i+1) instead of X(i). In the Improved Euler algo-
rithm, Eq. 3.46 is used instead of Eq. 3.33. The average of coefficient A is approxi-
mated using Eq. 3.47 and is close to cosα .

X(i+ 1) = AX(i)−BY(i) = X(i)−αY (i) (3.46)

Y (i+ 1) = AY (i)+ BX(i+ 1) = (1−α2)Y (i)+αX(i)

A =
1
2
(1 +(1−α2)) = 1− 1

2
α2 (3.47)

The radial error ER of the Improved Euler algorithm is maximized at θ = π/4 or
the iteration where Eq. 3.48 is satisfied.

X(i) = (1 +α)Y(i) (3.48)

When using the Improved Euler algorithm, angle α is computed as in Eq. 3.49
and for interpolating a quarter circle, Eq. 3.50 gives the number of iteration steps.
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Equation 3.50 shows that the Improved Euler algorithm is more efficient than the
Euler algorithm.

α = 4/R (3.49)

N = πR/8 (3.50)

3.3.2.6 Taylor Algorithm

In the Taylor algorithm, the coefficients A and B are approximated as a truncated se-
ries as in Eq. 3.51. The coefficient A in Eq. 3.51 is equal to the average of coefficient
A in the Improved Euler algorithm.

A = 1− 1
2
α2, B = α (3.51)

By applying Eq. 3.51, a maximum radial error is derived as shown in Eq. 3.52 and
the chord height error EH is derived as in Eq. 3.53.

ERmax =
π

2α

(√
1 +

1
4
α4−1

)
R∼= πRα3/16 (3.52)

EH(i) = R−R(i)

√
1− 1

4
α2 = R−R(i)+ (α2/8)R(i) (3.53)

In this algorithm, the chord height error EH is maximized at R(i) = R, the first
iteration. The maximum chord height error is calculated using Eq. 3.54.

EHmax = Rα2/8 (3.54)

Equation 3.52 and Eq. 3.54 lead to Eq. 3.55.

ERmax =
πα
2

EHmax (3.55)

From Eq. 3.55 we know that if angle α is smaller than 2/π , the chord height error
(EH) is larger than the radial error ER. In general, because α < 2/π is satisfied if R
is larger than 20 BLUs, this condition is practical.

Also, if the chord height error (EH) is set to 1 BLU, then α can be determined by
Eq. 3.54.

In the case of using the Taylor algorithm, angle α is computed using Eq. 3.56 and
for interpolating a quarter circle, Eq. 3.57 gives the number of iterations.

α =
√

8/R (3.56)

N = π/8α (3.57)
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3.3.2.7 Tustin Algorithm

The Tustin algorithm is based on an approximation relationship between differential
operators and a discrete variable z as shown in Eq. 3.58.

s =
2
T

(
z−1
z+ 1

)
(3.58)

Based on Eq. 3.58, A and B in Eq. 3.31 can be written as in Eq. 3.59.

A =
1− (α/2)2

1 +(α/2)2 B =
α

1 +(α/2)2 (3.59)

If coefficients A and B, as shown in Eq. 3.59, are applied to Eq. 3.34 and Eq. 3.35,
then Eq. 3.60 and Eq. 3.61 are derived.

DX(i) =− 1
1 +(α/2)2

[
α2

2
X(i)+αY(i)

]
(3.60)

DY (i) =
1

1 +(α/2)2

[−α2

2
Y (i)+αX(i)

]

Vx(i) =− V
R[1 +(α/2)2]

[α
2

X(i)+Y(i)
]

(3.61)

Vy(i) =
V

R[1 +(α/2)2]

[
−α

2
Y (i)+ X(i)

]

ER, EH, and angle α can be written down using the following equations.

ER(i) = 0 (3.62)

Because the radial error ER is always zero, angle α is determined based on the
chord height error EH. If R(i) = R, EH is determined using Eq. 3.63. If angle α is
very small, EH is determined using Eq. 3.64. Angle α is calculated using Eq. 3.65.

EH(i) = R− R√
1 +(α/2)2

(3.63)

EH(i) =
α2

α2 + 8
R (3.64)

α =

√
8

R−1
∼=
√

8
R

(3.65)

When using angle α from Eq. 3.65 for interpolating a quarter circle, Eq. 3.66
gives the number of iteration steps.
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N =
π
4

√
R/2 (3.66)

3.3.2.8 Improved Tustin Algorithm

In the Tustin algorithm, the radial error ER is set to 0. However, from a practical
point of view, ER can be set to 1 BLU. Doing this, it is possible to increase angle
α and the efficiency of the algorithm increases. Based on this idea, the Improved
Tustin algorithm was proposed. Figure 3.17 shows the radial error ER, the chord
height error EH is set to 1 BLU from which a new algorithm including Eq. 3.67
through 3.70 can be derived.

Y

X

(Xi, Yi)

α
2

R 1

ER=1

EH=1
R+1

Fig. 3.17 Improved Tustin algorithm

cos
α
2

=
R−1
R + 1

(3.67)

R−1
R + 1

=

√
2

1 + A
=

√
1 +
(α

2

)2 ∼= 1 +
α2

8
(3.68)

α =

√
16

R−1
∼= 4√

R
(3.69)

N =
π
8

√
R (3.70)
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As shown in Eq. 3.69, the angle α increases
√

2 times that in the Tustin algorithm.
Also, the number of iteration steps for interpolating a quarter circle decreases, as
indicated in Eq. 3.70. In the improved Tustin algorithm the radial error ER and the
chord height error EH are not necessarily set to 1 BLU; i.e., Eq. 3.71 can be derived
for the general case when ER and EH are set to β BLU.

Ri = R +β

cos
α
2

=
R−β
R +β

(3.71)

α = 2cos−1
(

R−β
R +β

)

3.3.2.9 Sampled-Data Interpolation

In the above sections, various algorithms for the Sampled-Data interpolation method
were introduced. Their characteristics are summarized in Table 3.8, which shows
that it is necessary to select the appropriate algorithm based on the application area.
For example, if floating-point arithmetic is possible, the Improved Tustin may be a
good selection because the number of iterations is relatively small and accuracy is
guaranteed. If floating-point arithmetic is not possible, the Taylor algorithm may be
adequate because the number of iterations is small and interpolating a circle with
larger radius is possible.

Table 3.8 Sampled data interpolation method characteristics

Method α N
Euler 4/πR π2R/8
IEM 4/R π

4

√
R/2

Taylor
√

8/R π
4

√
R/2

Tustin
√

8/R π
4

√
R/2

ITM 4/
√

R π
8

√
R

3.4 Fine Interpolation

When the sampling interval for rough interpolation and pulse train after acceler-
ation/deceleration is larger than that of position control, fine interpolation is per-
formed. For instance, if the sampling interval for rough interpolation and accelera-
tion/deceleration is 4 ms, and the sampling interval for position control is 1 ms, then
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the pulse train for every 4 ms is stored in the main CPU, which is fine-interpolated
for every 1 ms by the CPU in charge of motion control.

There are methods for fine interpolation, the linear method where pulse train of 4
ms is divided into 1 ms, and the moving-average method where the moving average
of pulse train is used for fine interpolation. Figure 3.18 shows a linear interpolation
method, where pulse train of 4 ms is linearly divided into that of 1 ms.

Formally, Eq. 3.72 can be used for linear methods. In Eq. 3.72, a( j) denotes the
number of pulses from fine interpolation at arbitrary time j, and p(i) is the number
of the pulses from rough interpolation and Acc/Dec control at time i. tipo is the it-
eration time of rough interpolation and N is the ratio of the iteration time of rough
interpolation and the iteration time of position control.

a( j) =
p(i)
N

, i≤ j < i+ tipo (3.72)

The second method is the moving average method. The equation used for the
moving average can be represented by an iterative equation as shown in Eq. 3.73. In
Eq. 3.72, a( j) is from linear interpolation, and b′( j) and b′′( j) are further interpo-
lation for the moving average. Table 3.9 illustrates the computing procedure for the
moving average.
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6 7 8 9
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Mcmd(n)
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Fig. 3.18 Linear fine interpolation

Figure 3.19 shows the moving average of the pulse train shown in Fig. 3.18 and
Table 3.9 gives the values from Fig. 3.19.

b( j) =
∑

N
2

k=− N
2 +1

a( j− k)

N
,b′( j) =

∑
N
2 −1

k=− N
2

a( j− k)

N
,b′′( j) =

b( j)+ b′( j)
2

(3.73)
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Table 3.9 Example of computing procedure for moving average

n j a( j +4) a( j +3) a( j +2) a( j +1) a( j) a( j−1) a( j−2) b( j) b′( j) b′′( j)
1 1 2 0 0 0 0 0 0 0 0 0

2 2 2 0 0 0 0 0 0 0 0
3 2 2 2 0 0 0 0 0 1

2 0.25
4 2 2 2 2 0 0 0 1

2 1 0.75

2 5 4 2 2 2 2 0 0 1 1 1
2 1.25

6 4 4 2 2 2 2 0 1 1
2 2 1.75

7 4 4 4 2 2 2 2 2 2 1
2 2.25

8 4 4 4 4 2 2 2 2 1
2 3 2.75

3 9 6 4 4 4 4 2 2 3 3 1
2 3.25

10 6 6 4 4 4 4 2 3 1
2 4 3.75

11 6 6 6 4 4 4 4 4 4 1
2 4.25

12 6 6 6 6 4 4 4 4 1
2 5 4.75

4 13 6 6 6 6 6 4 4 5 5 1
2 5.25

14 6 6 6 6 6 6 4 5 1
2 6 5.75

15 6 6 6 6 6 6 6 6 6 6
16 6 6 6 6 6 6 6 6 6 6

5 17 4 6 6 6 6 6 6 6 6 6
18 4 4 6 6 6 6 6 6 6 6
19 4 4 4 6 6 6 6 6 5 1

2 5.75
20 4 4 4 4 6 6 6 5 1

2 5 5.25

6 21 2 4 4 4 4 6 6 5 4 1
2 4.75

22 2 2 4 4 4 4 6 4 1
2 4 4.25

23 2 2 2 4 4 4 4 4 3 1
2 3.75

24 2 2 2 2 4 4 4 3 1
2 3 3.25

7 25 0 2 2 2 2 4 4 3 2 1
2 2.75

26 0 0 2 2 2 2 4 2 1
2 2 2.25

27 0 0 0 2 2 2 2 2 1 1
2 1.75

28 0 0 0 0 2 2 2 1 1
2 1 1.25

8 29 0 0 0 0 0 2 2 1 1
2 0.75

30 0 0 0 0 0 0 2 1
2 0 0.25

31 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0

3.5 NURBS Interpolation

For high-speed and high-accuracy machining functions various interpolation func-
tions such as splines, involute, and helical interpolation are used. In CNC free-form
curves can be approximated by a set of line segments or circle arcs. However, to get
an accurate approximation of the curve the approximating line or circle is generally
very short. These short segments result in inconsistency of feedrate and this inconsis-
tency of feedrate reduces the surface quality. In addition, many blocks are required
to define these short paths and the size of the part program increases dramatically. To
overcome this drawback, NURBS interpolation was developed. In NURBS interpo-
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Fig. 3.19 Pulse train moving average

lation, the CNC itself directly converts NURBS curve data from the part program into
small line segments, using positions calculated from the NURBS curve data. In this
way it is possible to reduce the size of the part program and it is possible to increase
the machining speed because the command feedrate depends on the interpolation.

3.5.1 NURBS Equation Form

There are various mathematical models such as cubic-spline, Bezier, B-spline, and
NURBS to represent free-form curves. Among these, NURBS is the most general
model covering others as special cases. With NURBS geometry it is possible to de-
fine free-form curves with complex shapes by using less data and to represent various
geometric shapes by changing parameters. Nowadays, NURBS geometry is gener-
ally used in CAD/CAM systems.

The mathematical form of a NURBS curve is shown in Eq. 3.74.

P(u) =
∑n

i=0 Ni,p(u)wiPi

∑n
i=0 Ni,p(u)wi

a≤ u≤ b (3.74)

where Ni,p(u) is a B-spline basis function and is defined as in Eq. 3.75

Ni,0(u) =
{

1 if ui ≤ u≤ ui+1

0 otherwise
(3.75)

Ni,p(u) =
u−ui

ui+p−ui
Ni,p−1(u)+

ui+p+1−u
ui+p+1−ui+1

Ni+1,p−1(u)
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In the above equation, the values ui are termed “knots” and the NURBS curve has an
associated ‘knot vector’, U . The knot vector U is defined as Eq. 3.76 and each value
ui in the knot vector is greater than or equal to the previous value, ui−1.

U = u0, . . . ,up,up+1, . . . ,um−p−1,um−p, . . . ,um (3.76)

a = u0 = . . . = up(k multiplicity)

b = um−p = . . . = um

m = n + p + 1

P denotes the degree of the B-spline basis function, Pi denotes control point i, and
wi stands for the ‘weight’ of Pi.

3.5.2 NURBS Geometric Characteristics

The characteristic of NURBS curves depends on that of the underlying B-spline basis
function and can be summarized as follows:

• If u /∈ [ui,ui+p+1), Ni,p(u) = 0
• If p and u are valid, Ni,p ≥ 0
• P(a) = P0, P(b) = Pn; the NURBS curve passes through the first control point and

the last control point.
• P(u) can be infinitely differentiated within defined parameter space and if u is ui

and multiplicity of knot ui is k, P(u) can be differentiated as many as p− k times.
• The movement of control point Pi or the change of weight wi affects the portion

of the curve where the parameter u ∈ [ui,ui+p+1].
• By adjusting the weight, the control point, and the knot vector of a NURBS curve

it is possible to represent curves with various shapes.

In CAD systems, NURBS curves with degree 3 are mainly used. Also, multiplicity
of the knot vector is usually 1 and the curve satisfies at least C2 continuity. These
two characteristics result in good geometric properties. In modern CAD systems
free-form shapes are represented using NURBS geometry.

The shape of a NURBS curve is defined based on control points, knots, and
weights. Control points define the basic position of the curve. Weights decide the
importance of individual control points. Knots decide the tangents of curves. Fig-
ure 3.20 shows the partial modification characteristics of a NURBS curve. Fig-
ure 3.20b shows the modified curve when control point V4 is moved. From Fig. 3.20b,
the partial modification of curve is shown. Figure 3.20c shows the curve when the
weight of control point V6 is changed.

Figure 3.21 shows the graphs that define a half-circle and a line by using a
NURBS model. To represent the half circle shown in Fig. 3.21a, five control points
(0,0), (0,5), (5,5), (10,5), (10,0) are used. There are five weights, one for each control
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Fig. 3.20 NURBS curves

point (1, 1√
2
,1, 1√

2
,1), and the knot vector (0,0,0,0.5,0.5,0.5,1,1,1) is used. The three

0s at the beginning and the three 1s at the one mean that the NURBS curve passes
through the first and last control points. To represent a line shown in Fig. 3.21b, the
following data are used:

Seven control points: (0,0), (1,1.5), (2,3), (3,4.5), (4,6), (5,7.5), (6,9)
weights for the control points: (1,1,1,1,1,1,1)
knot vector (0,0,0,0,1,2,3,4,4,4,4)

This shows that primitive curves such as lines and circles can be represented by
NURBS geometry, as well as complex general curves.
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Fig. 3.21 NURBS line and circle

3.5.3 NURBS Interpolation Algorithm

The NURBS interpolation algorithm introduced in this section is suitable for the
Sampled-Data interpolation method. This algorithm consists of 2 stages; In the first
stage, successive interpolated points are obtained with a maximum allowable inter-
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polation error. In the second stage, the interpolated point obtained from the first stage
is checked to determine whether it exceeds the allowable acceleration. If necessary,
a new interpolated point is calculated that satisfies the allowable acceleration. In the
following sections, the detailed algorithms will be addressed.

3.5.3.1 NURBS Interpolation Errors

In the Sampled-Data interpolation method, the interpolation frequency is fixed and
the speed is decided by the length of the interpolated line segment. The interpola-
tion error varies according to the curvature of curve. The interpolation error h for a
free-form curve is calculated as illustrated in Fig. 3.22. The center point of the line
from the interpolated point (xi,yi) and the successive interpolated point (xi+1,yi+1) is
compared with the midpoint of the curve between the points (xi,yi) and (xi+1,yi+1),
denoted (xc,yc). If the interpolation error, h, is greater than the maximum allowable
interpolation error (εmax) this means that the curvature is too high to satisfy the max-
imum allowable interpolation error, the next interpolated point moves closer to the
current interpolated point (xi,yi). The new interpolated point (x′i+1,y

′
i+1) is closer to

the interpolated point (xi,yi).

max

(x  , y )i i

(x    , y    )i+1 i+1(x    , y    )i+1 i+1

h

ci
(x  , y  )ci

ci
(x  , y  )ci

X

Y

Fig. 3.22 Adapting step length to curvature

Figure 3.23 represents the definition of the curvature at a particular point on a free
curve and Eq. 3.77 shows the curvature k and radius R.
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κ ≡ lim
Δ s→0

Δφ
Δs

,

R ≡ 1
κ

(3.77)

where κ : is the curvature

R : is the radius of curvature

Δφ : angle at the circumference

Δs : the length of the partial curve

∆s
hP

Q

2 2
K
1

Fig. 3.23 Curvature definition

A curve PQ is regarded as the part of a circle with radius R and curvature κ . If
we define P and Q as two successive interpolated points and the distance between
the line and the circle as an interpolation error, the relationship between Δφ , h, and
k can be summarized as Eq. 3.78 based on Eq. 3.77.

h =
1
κ
− 1
κ
× cos

(
Δφ
2

)
(3.78)

∼= 1
κ
− 1
κ
×
[

1− 1
2
×
(
Δφ
2

)2
]

=
Δφ2

8κ

In Eq. 3.78, the cosine function is approximated by a second-order Taylor series
expansion. The angle at the circumference (Δφ) can be written as Eq. 3.79.

Δφ = 2
√

2κh (3.79)

If the length of the partial curve Δs is approximated by the length of the line PQ,
the curvature is summarized as Eq. 3.80 based on Eq. 3.77 and Eq. 3.79.
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κ ∼= Δφ
Δs
∼= Δφ

PQ
∼=
√

8κh

PQ
(3.80)

κ =
8h

PQ
2 (3.81)

From Eq. 3.81, the approximated relationship between the command feed-rate F ,
the iteration time for an interpolation (ΔT ), curvature κ , and interpolation error h
can be summarized as in Eq. 3.82.

h ∼= κ× PQ
2

8
= κ× (F×ΔT )2

8
(3.82)

where F : is the feedrate

ΔT : is the interpolation iteration time

PQ : F×ΔT

Equation 3.82 says that the interpolation error (h) is proportional to the curvature
κ . If interpolated points are calculated with constant feedrate, an interpolation error
grows on curve parts with large curvature. Therefore, it is necessary to reduce the
interpolation error with a reduction of feedrate on the highly curved path portions.

From Eq. 3.82, in order to compute the feedrate at which the interpolation error
h falls within the maximum allowable interpolation error εmax, the curvature k of the
partial curve that connects a current interpolated point and a successive interpolated
point should be computed.

Set the current interpolated point to P(ui) by Eq. 3.74 and the next interpolated
point to P(ui+1). To calculate the speed to P(ui+1) from P(ui), it should be assumed
that the previous interpolated points P(ui−2), P(ui−1), and P(ui) are located on the
same circle.

It is assumed that the successive interpolated point P(ui+1) is located on the same
circle. Based on these assumptions, the curvature of the partial circle from P(ui)
and P(ui+1) is extrapolated from the curvature of the circle defined from P(ui−2),
P(ui−1), and P(ui).

Using the maximum allowable interpolation error εmax, the iteration time for an
interpolation T , and the approximated curvature κ , the speed between P(ui) and
P(ui+1) can be computed.

From Eq. 3.82, the speed Fε that satisfies the maximum allowable interpolation
error εmax, can be computed by Eq. 3.83.

h = εmax (3.83)

Fε =
2
ΔT

√
2εmax

κ
where εmax : maximum allowable interpolation error

Fε : allowable feedrate speed
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It is necessary to define the relationship between the parameter variable u of the
NURBS geometry and the feedrate Fε(t). The linear length between the current in-
terpolated point and the next interpolated point, ΔL, can be computed using Eq. 3.84.
We assume that the linear length from Eq. 3.84 is identical to the length of partial
curve. Noting that ΔL in Eq. 3.84 is defined in a time domain, we need to find its
equivalent value in the parametric domain to find the next interpolation point on the
NURBS curve. Let P(u) be the current point and we would like to find the next point
P(u+Δu). Then, using the property of ΔL in Eq. 3.84 and assuming the three points
in Cartesian space are close enough, we can approximate ΔL as shown in Eq. 3.85.

ΔL = Fε(t)×ΔT =

√
8× εmax

κ
(3.84)

P(u−Δu)∼= P(u)∼= P(u +Δu) (3.85)

ΔL = Fε(T )×ΔT = P(u)×Δu

Thus, the parameter variable increment Δu can be computed by Eq. 3.86.

Δu =
ΔL

P(u)
∼= Fε(t)×ΔT × 1

P(u−Δu)
(3.86)

√
8× εmax

κ
× 1

P(u−Δu)

3.5.3.2 Acceleration Control keeping Axis-Velocity Limit

In the previous section we determined the next interpolation point based on the max-
imum error allowed for interpolation. In the case that the rate of velocity is changed
sharply to beyond the acceleration for the joint abrupt motion will be caused, re-
sulting in machine damage and machining operation failure. To avoid such a prob-
lem, the distance of the next point to be interpolated should be shortened based on
Eq. 3.87. ΔL computed in this way should be applied to Eq. 3.84 and Eq. 3.85.

if
| ΔX
ΔTi
− ΔX

ΔTi+1
|

ΔT
> Amax (3.87)

(
ΔX
ΔTi+1

)
=

ΔX
ΔTi

+ Amax×ΔT (when
ΔX
ΔTi
− ΔX
ΔTi+1

> 0)
(

ΔX
ΔTi+1

)
=

ΔX
ΔTi
−Amax×ΔT (when

ΔX
ΔTi
− ΔX
ΔTi+1

< 0)

ΔLnew =

√(
ΔX
ΔTi+1

)2

+
(

ΔY
ΔTi+1

)2
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Fig. 3.24 Difference between c(u+1) and c(u)

3.6 Summary

The type of interpolators is categorized into hardware interpolators or software in-
terpolators, depending on the implementation method. Before CNC systems were
developed, a hardware interpolator was widely used in NC systems, but in today’s
CNC systems, this is carried out by a software interpolator.

A DDA interpolator is a typical hardware interpolator and was used for a long
time, but is not much used in today’s CNC systems. In modern CNC systems, a soft-
ware DDA interpolator is used, where the algorithm of the hardware DDA interpo-
lator is implemented in software. A software interpolation method can be classified
into a reference pulse method and a sampled-data interpolation method. A reference-
pulse method is suitable for high-accuracy machining and a sampled-data interpola-
tion method is suitable for high-speed machining. Due to the demand for high-speed
machining, the sampled-data interpolation method is typically used in today’s CNC
system.

In this chapter, various algorithms for the reference-pulse interpolation method
are explained, including, the software-DDA interpolation algorithm, Stairs Approxi-
mation Interpolation algorithm, Direct Search interpolation algorithm, Sampled-data
interpolation method, Tustin interpolation algorithm, improved Tustin interpolation
algorithm, Euler interpolation algorithm, improved Euler interpolation algorithm,
and Taylor interpolation algorithm. These algorithms need to be developed as mod-
ules so that the appropriate algorithm can be selected based on the application of the
CNC system.

Interpolation algorithms for free-form curves are important for solving problems
existing in CNC systems where the free-form curve is approximated by a number
of infinitesimal linear segments. Via the NURBS interpolation method, still under
investigation, problems such as speed reduction, poor surface quality and poor ma-
chining accuracy have been solved.



Chapter 4
Acceleration and Deceleration

In order to smooth the movement of a machine, the acceleration and deceleration for
the movement of the machine axes should be controlled. For CNC systems, two kinds
of Acceleration and Deceleration (Acc/Dec) control methods have been developed;
Acc/Dec Control Before Interpolation (ADCBI) and Acc/Dec Control After Interpo-
lation (ADCAI). These are classified based on the order in which the Acc/Dec control
is executed. In this chapter, first we will introduce the Acc/Dec control after inter-
polation that was originally used for NC systems. Following this, we will introduce
the Acc/Dec control before interpolation which is suitable for high-speed and high-
accuracy machining. In addition, a Look Ahead Algorithm will be addressed that is
used with the Acc/Dec control before interpolation for Die and Mold machining.

4.1 Introduction

The Acc/Dec control method can be classified with an Acc/Dec control before in-
terpolation and an Acc/Dec control after interpolation with respect to the processing
order of acceleration and deceleration control.

The Acc/Dec control before interpolation (ADCBI) is constructed differently ac-
cording to the interpolation type such as linear-, exponential- and S-curve-type in-
terpolation. Because the ADCBI needs to hold a lot of information, related to all the
interpolated points, a large amount of memory is required for executing this type of
Acc/Dec control. However, because of the large amount of information the Acc/Dec
control does not result in machining error because of the increased accuracy.

On the other hand, Acc/Dec control after interpolation is applied in an identical
manner for all interpolation methods. Therefore, the implementation is simple but
machining errors occur because each axis movement is determined separately. Since
Acc/Dec control in ADCAI is individually applied for each axis, acceleration and
deceleration for movements of each axis are carried out regardless of the interpolated
position. Accordingly, the interpolated points deviate from the desired path. A typical
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example of this deviation occurs during the corner machining process and the longer
the Acc/Dec time, the larger the machining error.

In contrast, machining errors due to ADCBI do not occur because the command
path is identical to the desired path. The key for executing Acc/Dec control before
interpolation is finding the time of acceleration and deceleration timing based on
the commanded feedrate, remaining displacement of the path, an allowable acc/dec
value, and current velocity. Therefore, ADCBI requires more computing power and
larger memory than ADCAI. From the point of view of real implementation, ADCBI
is much more complex than ADCAI.

In Section 4.2, both software and hardware types of the Acc/Dec control after
interpolation will be addressed. In addition, in Section 4.3, Acc/Dec control before
interpolation will be explained, including the block overlap algorithm, the velocity
control method at corners, and a Look Ahead algorithm.

4.2 Acc/Dec Control After Interpolation

In the case of ADCAI, firstly the NCK, Numerical Control Kernel, interprets a part
program using the interpreter module and calculates the displacement distance for
each axis, ΔX , ΔY , ΔZ for every interpolation time interval based on the interpreted
result using the rough interpolation module. Next, independent Acc/Dec control of
each axis is performed with respect to ΔX , ΔY , ΔZ and the fine interpolation then
follows. Finally, the total remaining displacement of each axis for every position
control time interval is calculated by the position control module.

The Acc/Dec control algorithm of Acc/Dec control after interpolation is different
from that of Acc/Dec control before interpolation. Figure 4.1 shows the flowchart
for implementing the NCK with Acc/Dec control after interpolation. The big differ-
ence with Acc/Dec control before interpolation is that the remaining displacement of
each axis is calculated at each interpolation time by rough interpolation and Acc/Dec
control of each axis is performed individually. Figure 4.2 shows the change of pulse
profile after the Acc/Dec control. It can be seen that the individual pulse profile of
each axis is generated by the rough interpolator and the individual acceleration and
deceleration scheme is applied to each pulse profile.

The ADCAI method has been widely used for NC and Motion Control systems
in both hardware and software interpolation. Regardless of the implementation man-
ner, the algorithm itself is not different between hardware and software types. In
this textbook, the theory of Acc/Dec control (software approach) and the hardware
implementation method (hardware approach) will be addressed.
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Part program

Interpreter

Rough interpolation

Mapping to each axis

Acceleration/Deceleration

Fine interpolation

Position control

Fig. 4.1 NCK functional procedure with ADCAI

Fig. 4.2 Change to pulse profile after Acc/Dec control

4.2.1 Acc/Dec Control by Digital Filter

The Acc/Dec control algorithm for the ADCAI method is based on digital filter the-
ory. According to the digital filter theory, if input signal x[n] is entered into the filter
with impulse response h[n], the output signal y[n] is represented by the convolution
of h[n] and x[n]. Equation 4.1 shows the general convolution of f1[n] and f2[n] for a
discrete time system.

f [n] = f1[n]∗ f2[n] (4.1)

= f1[0] f2[n]+ . . .+ f1[k] f2[n− k]+ . . .+ f1[n] f2[0]

Equation 4.1 can be written as Eq. 4.2.
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f [n] = f1[n]∗ f2[n] =
n

∑
k=1

f1[k]∗ f2[n− k] (4.2)

As shown in Fig. 4.3, if we assume that x[n] is defined as the output of a rough
interpolator and h[n] as the impulse response that has the normalized unit summation,
as shown in Eq. 4.3 we can obtain the Acc/Dec pulse profile in which the summation
of the input signal is the same as the summation of the output signal after convolution
of x[n] and h[n].

h[n]

t
0.2 0.2 0.2 0.2 0.2

x[n]

t

10 10 10 10 10*

∑ h[k] = 1
k = 0

n

=

x[n]*h[n]

2

1010
6

τ = nT

4
8 8 6 4 2

t

Fig. 4.3 Convolution of rough interpolation and impulse response

Where the Acc/Dec time τ is the multiplication of n and the sampling time T for
continuous convolution.

n

∑
k=1

h[k] = 1 (4.3)

Further, since h[n] denotes the differentiation of velocity, i.e. acceleration, we
can obtain the various Acc/Dec pulse profiles by changes of h[n]. The Linear-type,
Exponential-type, and S-curve-type, as shown in Fig. 4.4, are used for the Acc/Dec
filters of CNC systems. By using various digital filters different output profiles can
be obtained even when identical input pulses are used.

Equation 4.4, Eq. 4.5, and Eq. 4.6 represent the Linear-type filter, the Exponential-
type filter, and S-shape-type filter. Here, T means the sampling time and τ denotes
the time constant for Acc/Dec control.

HL(z) =
1
m

1− z−m

1− z−1 (4.4)

HE(z) =
1−α

1−αz−1 where α = exp−
T
τ (4.5)

HS(z) = HL(z)∗HL(z) =
1
m

1− z−m

1− z−1 ∗
1
m

1− z−m

1− z−1 (4.6)
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Fig. 4.4 Input and output pulse train profiles

Consequently, the Acc/Dec pulse profile generated by passing the input signal
Vi through the above-mentioned filters can be represented by a recursive equation.
Equation 4.7, Eq. 4.8, and Eq. 4.9 are recursive equations for obtaining the linear-
type Acc/Dec pulse profile, the exponential-type Acc/Dec pulse profile, and the S-
shape-type Acc/Dec pulse profile, respectively,

VLO(k) =
1
m

(Vi(k)−Vi(k−m))+V0(k−1) (4.7)

VEO(k) = (1−α)(Vi(k)−Vi(k−1))+V0(k−1) (4.8)

VSO(k) =
1
m

(Vi(k)−Vi(k−m))+VOtemp(k−1) (4.9)

where VOtemp(k) =
1
m

(VOtemp(k)−VOtemp(k−m))+VO(k−1)

Accordingly, the software Acc/Dec control algorithm is a relatively simple recur-
sive equation and, therefore, has the merit of short calculation time.
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4.2.2 Acc/Dec Control by Digital Circuit

Since the processing time of the Acc/Dec control method based on a digital circuit is
very short, it has been used when the performance of CPUs was low. Hardware de-
vices such as a shift register, a divider and an accumulator are used for implementing
the Linear-type Acc/Dec control, the Exponential-type Acc/Dec control, and the S-
shape Acc/Dec control. However, as CPU performance has improved, the hardware-
type Acc/Dec control has been replaced by the software type Acc/Dec control that
includes the same processing step as for the digital circuit.

In the ADCAI method, the pulse profile from rough interpolation is used as input
of the Acc/Dec control circuit. The Acc/Dec control circuit plays the role of smooth-
ing the change of pulse amount at the beginning and the end of a pulse profile.

In the following sections, three kinds of the Acc/Dec control algorithm will be
addressed; a Linear-type Acc/Dec control, an Exponential-type Acc/Dec control and
an S-shaped Acc/Dec control.

4.2.2.1 Linear-type Acc/Dec Control

The circuit for a Linear-type Acc/Dec control consists of n buffer registers (#1, #2,
. . . , #n), an Adder, an Accumulator, a SUM register, and a Divider. An Accumulator
stores the output of an Adder, a SUM register stores the value of an Accumulator,
and a Divider divides the value of an Accumulator by the number of buffer regis-
ters, n, where the buffer registers are serially connected. Each buffer register stores
pulses from rough interpolation. The value of each buffer register shifts to the next
buffer register every Acc/Dec control sampling time point (interpolation sampling
time point).

As shown in Fig. 4.5 the value of buffer register #n is input to an Adder, the value
of buffer register #n− 1 is shifted to buffer register #n, the value of register #n− 2
is shifted to buffer register #n− 1 and so on. Finally, the most recent output of the
rough interpolator ΔX is input to buffer register #1.

Based on the behavior of this circuit, at arbitrary sampling time k, the value of the
Accumulator and the output of the Divider ΔXo can be written as Eq. 4.10.

∆X

S(k-1) Shift register

Accumulator

Divider

S(k)

Shift register

∆X0

#1 #n

+ +

_

Fig. 4.5 Hardware Adder, Accumulator, SUM, Divider unit connections
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S(k) = S(k−1)+ΔX(k)−ΔX(k−n) (4.10)

ΔXo(k) = S(k)/n

∆X(k)

k

10 10 10 10 10

2

1010
64

8 8 6 4 2

k

10 10 10 10 10

∆X0(k)

Fig. 4.6 Profiles ΔX = 10, ∑ΔX = 80

Let us explain the behavior of a Linear-type Acc/Dec control with an example.
We assume that the sampling time T is 8 ms, the number of buffer registers, n, is 5,
and the number of pulses ΔX that are entered into the circuit at every sampling time
is ten, the output pulse profile of the circuit is shown in Table 4.1.

Table 4.1 Circuit output pulse profile

Sampling Input pulse: Output of Output of Output
time: K ΔX(k) buffer register: Adder: S(k) Pulse:

ΔX(k−5) ΔX0(k)
1 10 0 10 2
2 10 0 20 4
3 10 0 30 6
4 10 0 40 8
5 10 0 50 10
6 10 10 50 10
7 10 10 50 10
8 10 10 50 10
9 0 10 40 8
10 0 10 30 6
11 0 10 20 4
12 0 10 10 2
13 0 10 0 0
Σ 80 80

As shown in Fig. 4.3, initial output pulses increase or decrease by a constant
number. The total number of input pulses (in this example, 80) is identical with the
total number of output pulses from the circuit. After the number of input pulses
becomes 0, we can see that the number of output pulses begins to decrease. This
means that the acceleration mode continues until the buffer registers become full,
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and then deceleration mode until the buffer registers are empty. Accordingly, we
know that the number of buffer registers is proportional to the Acc/Dec time and the
relationship between the Acc/Dec time constant and the number of buffer registers,
n, can be written as Eq. 4.11.

τ = nT (4.11)

where, T denotes the sampling time and, in the case of the above example, the
Acc/Dec time constant is 40 ms (5×8ms).

Alternatively, if the size of the input pulse train is smaller than the number of
buffer registers, the maximum number of output pulses is different from the number
of input pulses. For example, if the number of input pulses, ΔX , is 10 and the size of
the input pulse train is 4, the output pulse train is obtained as Table 4.2.

Table 4.2 Output pulse train

Sampling Input Pulse: Output of: Output of Output Pulse:
time: K ΔX(k) Buffer Reg.: Adder: S(k) ΔXo(k)

ΔX(k−5)
1 10 0 10 2
2 10 0 20 4
3 10 0 30 6
4 10 0 40 8
5 0 0 40 8
6 0 10 30 6
7 0 10 20 4
8 0 10 10 2
9 0 10 0 0
Σ 40 48

As shown in Table 4.2, the maximum value of output pulses is 8 and this is less
than the number of input pulses, 10. This means that a short block, having insufficient
pulses, cannot reach the commanded (desired) speed. Accordingly, deceleration is
started before full acceleration is developed because of the short length of the block.

4.2.2.2 S-shape-type Acc/Dec Control

Figure 4.7 shows an S-shape-type Acc/Dec control circuit for one axis. The circuit
consists of n buffer registers, n Multipliers, an Adder, and a Divider.

In Fig. 4.7, S1, S2, . . ., and Sn denote the buffer registers functioning as a shift
register. ΔX denotes a recent output pulse from the rough interpolator that is input
to the buffer registers. As shown in the Linear-type Acc/Dec control circuit, ΔX
values stored in a buffer register are shifted at every sampling time (S1→ S2,S2→
S3, · · · ,Sn−1→ Sn). Further, multipliers (M1, ..., Mn) have their own coefficients (K1,
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Fig. 4.7 S-shape-type Acc/Dec control

..., Kn) and the values of each buffer register are multiplied and addition and division
follow for the circuit ΔXo. Here, the dividing constant is defined as in Eq. 4.12.

Dividing constant =
n

∑
i=1

Ki (4.12)

Also, at arbitrary sampling time k, if the values of buffer registers Sa ∼ Sn are
A1 ∼ An, then the value of an Adder can be written as Eq. 4.13.

Adder =
n

∑
i=1

Ai×Ki (4.13)

Consequently, the output of the circuit is summarized as Eq. 4.14.

ΔXo =
Adder

Divider
= ∑n

i=1 Ai×Ki

∑n
i=1 Ki

(4.14)

An example of the behavior of an S-shape-type Acc/Dec control circuit is ex-
plained as follows. As shown in the example of the Linear-type Acc/Dec control
circuit, we assume that the input to the circuit, i.e. the output of a rough interpo-
lator, is the same as Table 4.3, the number of buffer registers is five, and all the
coefficients of the Multipliers are one. Accordingly, the dividing constant is set to
5 (1 + 1 + 1 + 1 + 1 = 5). When the initial values of the shift registers are 0, the
behavior of the circuit is simulated as shown in Table 4.4

Comparing Table 4.1 with Table 4.3, we know that the output of the S-shape-type
Acc/Dec control circuit is identical with the output of the Linear-type Acc/Dec con-
trol circuit because the coefficients of all Multipliers are set to 1. If the coefficient
of the Multipliers, Ki, are identical S-shape Acc/Dec control results in the same per-
formance as Linear Type Acc/Dec control. Because of this fact we know that the
coefficients of the multipliers, Ki, have a close relationship with the acceleration and
deceleration. Therefore, it is possible to modify particular acceleration and deceler-
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Table 4.3 S-shape output pulses

Sampling Input pulse: Output of Output Pulse:
time: K ΔX(k) Adder: ΔXo(k)
1 10 10 2
2 10 20 4
3 10 30 6
4 10 40 8
5 10 50 10
6 10 50 10
7 10 50 10
8 10 50 10
9 0 40 8
10 0 30 6
11 0 20 4
12 0 10 2
Σ 80 80

ation curves by changing various coefficients of the multipliers, Ki. Table 4.4 shows
the behavior of the S-shape Type Acc/Dec control circuit simulation with K1 = 0.5,
K2 = 1, K3 = 2, K4 = 1, K5 = 0.5. We can see that the summation of input pulses
and the summation of output pulses are identical and the output of the circuit shows
a non-uniform shape.

Figure 4.8 shows the result given in Table 4.4 in graphic form, from which we can
conclude that the output of the circuit is depicted as an S-shape curve.

Table 4.4 S-shape pulse profile

Sampling Input Pulse: Output of Output Pulse:
time: K ΔX(k) Adder: ΔXo(k)
1 10 5 1
2 10 15 3
3 10 35 7
4 10 45 9
5 10 50 10
6 10 50 10
7 10 50 10
8 10 50 10
9 0 45 9
10 0 35 7
11 0 15 3
12 0 5 1
Σ 80 80
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Fig. 4.8 Output of circuit for S-shape curve

4.2.2.3 Exponential-type Acc/Dec Control

Figure 4.9 shows the Exponential-type Acc/Dec control circuit that is constructed
using DDAs unlike the Linear-type Acc/Dec control circuit and the S-shape-type
Acc/Dec control circuit.

Register p

Fa: addition
      pulse

Counter

Add

Fi

F0

y      x+y

+

_

Accumulator

2 2n 0

2 2n 0

∑

..... x

..... y

Fig. 4.9 Exponential-type Acc/Dec control circuit

The fundamental concept of the Exponential-type Acc/Dec control is as follows.

First, pulses with constant frequency [Fi] are generated from a pulse generator as
shown in Fig. 4.10. The number of generated pulses, N, determines the displacement
of an axis and the frequency, Fi, determines the speed of that axis.

The value obtained by subtracting the output from the accumulator from the pulse
of the pulse generator is stored in register p. At the same time, the value of register p
(x) and the value of the accumulator (y) are added whenever Fa is generated, where
Fa is generated at constant time intervals. Further, the sum of the value of the register,
x, and the value of the accumulator, y, are stored in the accumulator (y← x + y).
In this circuit, an adder (ADD) and the register p can be regarded as an Up/Down
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Fig. 4.10 Constant-frequency pulse generation

Counter. This can be simulated by connecting the output of the pulse generator as
input to an Up port and the output from the accumulator as input to a Down port.

This Acc/Dec control circuit used a DDA (Digital Differential Analyzer) element
when the performance of microprocessors was insufficient for fast calculation.

The principle of an Exponential-type Acc/Dec control is as follows:

If the output of the pulse generator is fc[pulses/second], the input pulse of the
Exponential-type Acc/Dec control circuit is written as Eq. 4.15.

Fi =
{

fc (0≤ t ≤ td)
0 t > td

(4.15)

During a short time segment Δ t, the number of pulses, Δx, which is stored in
register p, is written as Eq. 4.16.

ΔX = (Fi−Fo)Δ t (4.16)

The number of pulses stacked at the accumulator during a short time segment Δ t
can be represented by the value of register p to which is added the number of addition
command pulses (Fa∗Δ t) generated during Δ t. Accordingly,ΔY can be summarized
as in Eq. 4.17.

ΔY = XFaΔ t (4.17)

The number of pulses that overflow from the accumulator for Δ t is calculated as
FoΔ t. If the number of bits in the accumulator is assumed to be n, the number of
overflow pulses is Δy/2n so that Eq. 4.18 is derived as:

FoΔ t =
ΔY
2n (4.18)

When t is 0, the values of the register p and the accumulator are zero, then this is
represented by Eq. 4.19.

X(0) = Y (0) = 0 (4.19)

If we approximate Δ t, ΔX , and ΔY with dt, dx, and dy respectively, Eq. 4.16,
Eq. 4.17, Eq. 4.18, and Eq. 4.19 can be expressed as Eq. 4.20.



4.2 Acc/Dec Control After Interpolation 119

dx = (Fi−Fo)dt (4.20)

dy = xFadt

Fodt =
dy
2n

X(0) = Y (0) = 0

By solving the differential equation in Eq. 4.20, we can derive the relationship
between Fi and Fo as shown in Eq. 4.21.

(i) 0≤ t ≤ td

Fo(t) = Fi(1− e−
Fa
2n t) = Fi(1− e−

t
X ),X =

2n

Fa
(4.21)

(ii) t > td

Fo(t) = Fi(1− e−
td
X )e−

(t−td )
X = Fo(td)e−

(t−td )
X

From Eq. 4.21, it is evident that Acc/Dec control is executed in an exponential
form. The number of bits in the accumulator in Eq. 4.21 determines the acceleration
and deceleration time. When the number of Accumulator bits is larger, the number
of the overflow pulses per unit time decreases and consequently the acceleration and
deceleration time increases. Also, if the frequency of the addition pulse decreases,
the time constant increases and the Acc/Dec time grows. This is due to the fact that
the number of pulses that are added to the Accumulator per unit time decreases,
which in turn means that the number of the overflowed pulses decreases.

If we represent the sampling time and output frequency of the pulse generator as
T and Fi respectively, the number of pulses input to the Exponential-type Acc/Dec
control circuit every sampling time is given by Eq. 4.22.

Pi = T ×Fi (4.22)

For example, if the sampling time T is 8 ms and the frequency of the pulse gen-
erator is 1000 Hz, 8 pulses are input to the circuit every sampling time. At arbitrary
moment k, the value of register p can be written as Eq. 4.23 when pulses overflowing
from the Accumulator are not subtracted.

x̂(k) = x(k−1)+ Pi(k) (4.23)

where, x(k−1) is the value of register p at k−1.
At the arbitrary moment, k, the number of the pulses that have overflowed from

the accumulator, O(k), is given by Eq. 4.24.

O(k) =
y(k)
2n (4.24)
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where, n is the number of bits of the Accumulator.
Therefore, at the arbitrary moment, k, the number of overflow pulses, (Po(k)), is

given by Eq. 4.25.

Po(k) = O(k)−O(k−1) (4.25)

Furthermore, at the arbitrary moment, k, the value of register p, (x(k)), after sub-
tracting the pulses that have overflowed from the accumulator can be written as
Eq. 4.26.

x(k) = x̂(k) = Po(k) (4.26)

At the arbitrary moment, k, the residual value of the accumulator, (y(k)) is given
by Eq. 4.27.

y(k) = y(k−1)+ x̂(k) (4.27)

By using the Z-transformation, the equation set Eq. 4.23, Eq. 4.24, Eq. 4.25,
Eq. 4.26 and Eq. 4.27 is converted to Eq. 4.28.

X̂(z) =
1
z

X(k)+ Pi(z)

Y (z) =
1
z

Y (z)+ X̂(z)

O(z) =
Y (z)
2n (4.28)

Po(z) = O(z)− 1
z

O(z)

X(z) = X̂(z)−Po(z)

From Eq. 4.28, the relationship between the input Pi and the output Po is derived
as in Eq. 4.29.

Po(z) =
1
z

Po(z)+
Pi(z)− 1

z Po(z)
2n (4.29)

Consequently, by executing the inverse Z-Transformation, Eq. 4.29 is transformed
into Eq. 4.30.

Po(k) = Po(k−1)+
Pi(k)−Po(k−1)

2n (4.30)

With iterative calculation of Eq. 4.30 for every sampled datum, Exponential-type
Acc/Dec control is performed wherein the Acc/Dec time constant τ is defined by
Eq. 4.31.

τ = T ×2n (4.31)
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4.2.3 Acc/Dec Control Machining Errors

As mentioned above, because Acc/Dec control with ADCAI is applied separately for
each axis, the path after Acc/Dec deviates from the programmed path.

In the case of a linear path on the XY plane, because the speed ratio between the X-
and Y-axes before and after applying Acc/Dec control is constant, machining error
due to Acc/Dec control does not occur. However, in the case of a circular path on
the XY plane, the speed of the X- and Y-axes input to the Acc/Dec control circuit is
actually a sine wave or cosine wave form. After passing through an Acc/Dec control
filter (or circuit), the speed profiles of the X- and Y-axes are changed to a sine wave
or cosine wave whose beginning and end are distorted.

Due to the characteristics of the Acc/Dec control filter, the summation of input
pulses and the summation of output pulses are identical and, therefore, after passing
through the Acc/Dec filter the axes can reach the commanded position. However,
with the distortion of the speed at the beginning and end of acceleration and decel-
eration, the speed ratio between the X-axis and Y-axis is changed. The consequence
is that there is a deviation between the programmed path and the path after Acc/Dec
control.

In this section, the machining error for Linear Type Acc/Dec control, S-shape-type
Acc/Dec control, and Exponential-type Acc/Dec control are discussed with respect
to a circular path. For convenience of explanation, we assume that the feedrate for
a circular path is F(mm/min) and the radius of the circular path is R(mm). Then the
speed of each axis is given by Eq. 4.32.

Vx(t) =−Rwsinwt

Vy(t) = Rwcos(wt) (4.32)

w =
F
R

By applying Laplace transformation, Eq. 4.32 can be converted into Eq. 4.33.

Vx(s) =−Rw
w

s2 + w2 (4.33)

Vy(s) = Rw
w

s2 + w2

By using Eq. 4.32 and Eq. 4.33, the machining error occurring with the three
Acc/Dec control methods previously described are addressed during circular ma-
chining.
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4.2.3.1 Machining Error with Linear Type Acc/Dec Control

In the Linear-type Acc/Dec control shown in Fig. 4.4, the impulse response for the
Linear Type Acc/Dec control whose time constant is τ is given by Eq. 4.34.

Hl(s) =
1
τ

1
s
(1− e−τs) (4.34)

where τ represents the Acc/Dec time. Therefore, the output of the Acc/Dec control,
Wx(s), of the X-axis is given by Eq. 4.35.

Wx(s) = Hl(s)Vx(s)

= −Rw
1
τ

1
s

1
s2 + w2 [1− e−τs]

=
K
w

[
1
2
− s

s2 + w2 ][1− e−τs] (4.35)

where K = −Rw
1
τ

Using the inverse Laplace transform, Eq. 4.35 is converted to Eq. 4.36.

Wx(t) =
2

wτ
sin

wτ
2

(−Rw)sinw(t− τ
2
) (4.36)

Wx(t) in Eq. 4.36 denotes the speed of the X-axis and, by integrating Wx(t), we
can obtain the radius of the circular path after applying the Linear-type Acc/Dec
control as Eq. 4.37a. From Eq. 4.37a, we can find the radius of the circular path after
Acc/Dec time (t > τ), R′, which is expressed by Eq. 4.37b.

r = R
2

wτ
sin

wτ
2

cosw
(

t− τ
2

)
(4.37a)

R =
2

wτ
sin

wτ
2

R (4.37b)

As the machining error is the difference between the radius of the commanded
path and the distorted path due to the Linear-type Acc/Dec control, the error is sim-
plified as Eq. 4.38.

ΔR = R−R′ = R(1− 2
wτ

sin
wτ
2

) (4.38)

ΔR = R{1− 2
wτ

(
wτ
2
− w3τ3

8 ·3!
. . .)}

therefore ΔR ≈ R
24

w2τ2 ≈ 1
24

τ2 F2

R

where, sin z =
∞

∑
n=0

(−1)n z2n+1

(2n + 1)!
from the Taylor series.
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4.2.3.2 Machining Error with S-shape-type Acc/Dec Control

In the S-shape Acc/Dec control shown in Fig. 4.4, the impulse response for the S-
shape Acc/Dec control whose time constant is τ is given by Eq. 4.39.

Hs(s) =
4
τ2

1
s2 (1−2e−

τ
2 s + e−τs) (4.39)

where τ represents the Acc/Dec time. For the X-axis, the output of the Acc/Dec
control, Wx(s), is represented by Eq. 4.40.

Wx(s) = Hs(S)Vx(s)

= −Rw
4
τ2

w
s2 + w2 [1−2e−

τ
2 s + e−τs]

=
K
w

[
1
s2 −

1
s2 + w2 ][1−2e−

τ
2 s + e−τs] (4.40)

where K = −Rw
4
τ2

As with Linear-type Acc/Dec control Eq. 4.40 is converted to Eq. 4.41 using the
inverse Laplace transform.

Wx(t) =
K
w

[{t− 1
w

sin wt}−2{t− τ
2

sin w(t− τ
2
}

+{t− τ− 1
w

sinw(t− τ)}] (4.41)

Equation 4.41 is simplified as Eq. 4.42.

Wx(t) =
K
w2 {−sinwt + 2sinw(t− τ

2
)− sinw(t− τ)}

=
K
w2 {2sinw(t− τ

2
)−2sinwt cos2 wτ

2
+ 2coswt sin

wτ
2

cos
wτ
2
}

=
K
w2 {2sinw(t− τ

2
)−2sinw(t− τ

2
)cos

wτ
2
} (4.42)

=
K
w2 2(1− cos

wτ
2

sin t− τ
2

=
8

w2τ2 (1− cos
wτ
2

)(−Rw)sin(t− wτ
2

)

Wx(t) in Eq. 4.42 denotes the speed of the X-axis and, by integratingWx(t), we can
obtain the path radius after S-shape-type Acc/Dec control is applied. Equation 4.43a
shows the result of the integration of Wx(t). From Eq. 4.43a we know that after
the Acc/Dec time, the radius of the path from S-shape-type Acc/Dec control, R′, is
represented by Eq. 4.43b.
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r = R
8

w2τ2 (1− cos
wτ
2

)sinw
(

t− τ
2

)
(4.43a)

R′ =
8

w2τ2 (1− cos
wτ
2

)R (4.43b)

As the machining error is the difference between the radius of the command path
and the distorted path due to the S-shape-type Acc/Dec control, the error is simplified
as Eq. 4.44.

ΔR = R−R′ = R[1− 8
w2τ2 (1− cos

wτ
2

)]

= R[1− 8
w2τ2 {1− (1− w2τ2

4 ·2!
+

w4τ4

24 ·4!
. . .)}]

= R{1− 8
w2τ2 (

w2τ2

4 ·2!
+

w4τ4

24 ·4!
. . .)} (4.44)

so, ΔR ≈ 1
48

w2τ2 ≈ 1
48

τ2 F2

R

where, cosz =
∞

∑
n=0

(−1)n z2n

(2n)!
from the Taylor series.

4.2.3.3 Machining Error with Exponential Type Acc/Dec Control

In the Exponential-type Acc/Dec control shown in Fig. 4.4, the impulse response for
the Exponential-type Acc/Dec control whose time constant is τ is given by Eq. 4.45.

He(s) =
1
τ

s+ 1
τ

(4.45)

For the X-axis, the output of the Acc/Dec control, Wx(s), is given by Eq. 4.46.

Wx(s) = He(s)Vx(s)

= −Rw
1
τ

1

s+ 1
τ

w
w2 + s2

=
K

s+ a
w

s2 + w2 (4.46)

where K = −Rw
1
τ
, a =

1
τ

Equation 4.46 is converted to Eq. 4.47 using the inverse Laplace transform.
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Wx(t) = (Ae−at + Bcoswt +
C
w

sinwt) (4.47)

where A =
wK

w2 + a2 ,B =
−wK

w2 + a2 ,C =
awK

w2 + a2

Wx(t) in Eq. 4.47 denotes the speed of the X-axis and by integrating Wx(t), we ob-
tain the path radius after Exponential-type Acc/Dec control has been applied. Equa-
tion 4.48a shows the result of the integration of Wx(t). From Eq. 4.48a we know that
after Acc/Dec time the radius of the path from Exponential-type Acc/Dec control,
R′, is given by Eq. 4.48b.

r = −A
a

e−at +
1
w

√
B2 +

C2

w2 sin(wt−θ ) (4.48a)

where θ = cos−1

(√
B2 +

C2

w2

)

R′ =

√
B2 +

C2

w2 = B

√
1 +

a2

w2 =
−wK

w2 + a2

√
1 +

a2

w2 (4.48b)

=
−K
a

1√
1 + w2

a2

=−R
1√

1 + w2

a2

As the machining error is the difference between the radius of the commanded
path and the distorted path due to Exponential-type Acc/Dec control, the error is
simplified as Eq. 4.49.

ΔR = R−R′ = R

⎛
⎝1− 1√

1 = w2

a2

⎞
⎠

ΔR = R[1−{1− 1
2

(w
a

)2− 3
8

(w
a

)4
. . .}] (4.49)

so ΔR ≈ R
2

(w
a

)2 ≈ 1
2
τ2 F2

R

where,
1

(1 + z)m =
∞

∑
n=0

(−m//n
)

zn

= 1−mz+
m(m+ 1)

2!
z2− m(m+ 1)(m+ 2)

3!
z3 + . . .

from a binomial series.
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4.2.3.4 Machining Error Summary

The machining error due to the Acc/Dec control depends on the type of Acc/Dec
control filter. The machining errors are summarized in Table 4.5 with respect to each
type of Acc/Dec control filter.

According to Table 4.5 the machining error is proportional to the square of the
feedrate and the Acc/Dec time. It is also in inverse proportion to the radius of the
circular path. Therefore, from this, we know that the higher the feedrate the longer the
Acc/Dec time, the shorter the radius of the circular path and the larger the machining
error. We also know that the accuracy of the S-shape-type Acc/Dec control is better
than that of the alternatives.

Table 4.5 Machining error due to Acc/Dec filter

Control type Machining Error Remarks

Linear ΔR = F2τ2

24R F: Feedrate

Exponential ΔR = F2τ2

2R τ : Time constant

S-shape ΔR = F2τ2

48R R: Radius of circle

4.2.4 Block Overlap in ADCAI

As mentioned in Chapter 2, the G-code system provides various instructions for con-
trolling axes. Setting the block control mode is one of the G-code functions. For
example, in the G-code system of the FANUC controller, there are two kinds of path
control mode; exact stop mode (G61) and continuous mode (G64).

In exact stop mode, the machine follows the programmed path as exactly as pos-
sible, stopping at sharp corners of the path. Alternatively, in continuous mode, sharp
corners of the path may be rounded slightly so that the feedrate may be kept up.
Figure 4.11 shows the actual toolpath when exact stop mode is applied and Fig. 4.12
shows the actual toolpath when continuous mode is applied.

Exact stop mode generally results in reduction of machined surface quality due
to the stoppage of axis movement and increases machining time due to acceleration
and deceleration for all blocks.

In continuous mode, the tool begins the movement to the successive block before
the tool reaches the end of the block. Unlike exact stop mode, this mode does not
result in reduction of the surface quality and increase in machining time. In contin-
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X

Y G90
G01  G61  X50.  Y20.  F100
X50.  Y50.

Fig. 4.11 Actual path in exact stop mode

uous mode, the toolpath does not pass through the programmed path as shown in
Fig. 4.12. Therefore, machining error always occurs at sharp corners. The path near
the corner depends on the Acc/Dec control type and, in general, the machining error
is small enough so as not to reflect on machining accuracy.

X

Y G90
G01  G64  X50.  Y20.  F100
X50.  Y50.

Fig. 4.12 Actual path in continuous mode

Figure 4.13 shows the result of X-axis interpolation and Acc/Dec control for two
successive blocks. In Fig. 4.13, Block 1 and Block 2 are successive blocks and
Fig. 4.13a and Fig. 4.13b show the interpolation result of Block 1 and Block 2 respec-
tively. Figure 4.13c and Fig. 4.13d show the results of Linear Type Acc/Dec control
for Block 1 and Block 2. If we combine the result of interpolation and Acc/Dec con-
trol for the two blocks with respect to time, we obtain the time–pulse graph shown
in Fig. 4.14.

In continuous mode, the end result of Block 1 and the beginning of Block 2 are
continuously connected. The connected interpolation pulse train is input continu-
ously to the Acc/Dec controller and the Acc/Dec controller performs Acc/Dec con-
trol without considering blocks. Figure 4.14 shows the result of Linear-type Acc/Dec
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Time
(a) The interpolation result of Block 1

Pulse

Time
(b) The interpolation result of Block 2

Pulse

Time
(c) The result of Acc/Dec control for Block 1

Pulse

Time
(d) The result of Acc/Dec control for Block 2

Pulse

Acc/Dec
control

Acc/Dec
control

Fig. 4.13 X-axis interpolation and Acc/Dec control

control for two successive blocks. The time–pulse graph in Fig. 4.14 is identical with
the summation of the two time–pulse graphs in Fig. 4.13b and Fig. 4.13d.

As shown in Fig. 4.14, in Continuous Mode, reduction of speed does not occur at
the corner between two success blocks join. The speed is accelerated or decelerated
considering the difference in the feedrate of the two blocks.

Time
Block 1

Pulse

Time

Pulse

Acc/Dec
control

Block 2 Block 1 Block 2

Fig. 4.14 Time–pulse graph for two successive blocks

4.3 Acc/Dec Control Before Interpolation

Unlike ADCAI-type NCK, ADCBI-type NCK generates the speed profile before
executing rough interpolation. Also unlike ADCAI-type NCK, where Acc/Dec con-
trol is carried out separately for individual axes, ADCBI-type NCK carries out the
Acc/Dec control for the programmed path itself. Therefore, theoretically, ADCBI-
type NCK does not result in machining error.

As mentioned in Section 4.2.3, ADCAI generates machining error in proportion
to the feedrate and this has become a serious problem considering that the machining
speed of machine tools is getting faster. Therefore, ADCBI is essential to implement
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the high-speed machining functions that have become a typical machine-tool func-
tion and consequently, the latest machine tools provide ADCAI as a basic function.

Part program

Interpreter

Acceleration/Deceleration

Rough interpolation

Mapping to each axis

Fine interpolation

Position control

Fig. 4.15 ADCBI-type NCK flowchart

Figure 4.15 shows the flowchart for the overall procedure of the ADCBI-type
NCK. Figure 4.16 shows the sequence of executing Acc/Dec control and rough in-
terpolation and the output at each stage. The Acc/Dec Controller calculates the speed
profile considering acceleration and deceleration. The rough interpolator then gener-
ates the interpolated points considering tool displacement and the remaining length
of the programmed path for every iteration time instant based on the speed profile.

4.3.1 Speed-profile Generation

In ADCBI, the path length, the allowable acceleration and deceleration, the itera-
tion time for rough interpolation, and the commanded feedrate are considered when
generating a speed profile. For convenience, let us suppose that Acc/Dec control is
applied to a linear path, the length of the linear path is L(mm), the allowable ac-
celeration is A(mm/s2), the allowable deceleration is D(mm/s2), the iteration time



130 4 Acceleration and Deceleration

Block
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Block end position

Block start position

Velocity

Time

F

Interpret Acceleration/Deceleration

Rough
interpolation

Fig. 4.16 Linear path Acc/Dec control

for rough interpolation is τ(s), and the commanded feedrate from a part program is
F(mm/s2).

In order to generate a speed profile, it is necessary to check if the linear path is
a normal block or a short block. The normal block includes an acceleration zone,
constant-speed zone, and deceleration zone, while the zone, or short block, does not
include the constant-speed zone. Equation 4.50 is the condition that a normal block
should satisfy. If Eq. 4.50 is not satisfied then the block is a short block.

F2

2A
+

F2

2D
≥ L (4.50)

In the case of a normal block, we can obtain a speed profile like that shown in
Fig. 4.17a. In the case of a short block, we can obtain a speed profile like that shown
in Fig. 4.17b. In the case of a short block, the length of the path is shorter than the
length needed for the actual speed to reach the commanded feedrate F from zero
speed and return back to zero speed. It is therefore impossible for the actual speed to
reach the commanded feedrate, F .

Velocity (mm/s )

Time (ms)

2

F

Velocity (mm/s )

Time (ms)

2

F

(a) Normal block (b) Short block

Fig. 4.17 Speed profiles
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After checking whether the path is a normal block or a short block using Eq. 4.50,
the speed profile is generated according to the path type. In the case of a normal
block, the acceleration time TA that is spent to reach the commanded feedrate F
from 0(mm/sec), is computed by Eq. 4.51 and the deceleration time TD, which is
spent to reach 0(mm/s) from the commanded feedrate F is computed using Eq. 4.52.
The constant speed time TC is calculated by dividing the length of the path after
subtracting the length needed for acceleration and deceleration by the commanded
feedrate, as given by Eq. 4.53.

TA =
F
A

(4.51)

TD =
F
D

(4.52)

TC =
L− F2

2A − F2

2D

F
(4.53)

In the case of a short block, the length of the block is obtained by integrating the
speed profile shown in Fig. 4.17b with respect to time. If the maximum reachable
speed for the short block is F ′, acceleration time TA, deceleration time TD, and F ′ are
calculated using Eq. 4.54.

TA =
F ′

A

TD =
F ′

D
(4.54)

L =
F ′ × (TA + TD)

2

From the above equations, it is possible to generate a speed profile for both normal
blocks and short blocks. Also, based on the generated speed profile, the interpolation
for a linear path can be carried out. In the ADCBI-type NCK, the rough interpolator
calculates the interpolated point through which the tool should go for every constant
iteration time for interpolation, τ . In the acceleration range, the length that the tool
should move every iteration time for interpolation can be calculated using Eq. 4.55.

Vi+1 = Vi + τ ·A,(i = 0,1,2, . . . ,NA) (4.55)

Li =
V 2

i+1−V 2
i

2A
where, Vi is the velocity of the ith interval and V0 = 0

Li is the displacement for the ith sampling time.

NA =
TA

τ
.
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In the constant speed range the commanded feedrate is F and the tool moves τ×F
every iteration time for interpolation. In the deceleration interval, the length through
which the tool moves every iteration time for interpolation can be calculated using
Eq. 4.56.

Vi+1 = Vi− τ ·D,(i = 0,1,2, . . . ,ND) (4.56)

Li =
V 2

i −V 2
i+1

2D
where, Vi is the velocity of the ith interval and V0 = F

Li is the displacement for the ith sampling time.

ND =
TD

τ
.

It is possible to calculate the interpolated point by projecting the displacement
through which the tool moves in every iteration time for interpolation onto the pro-
grammed path.

4.3.2 Block Overlap Control

Hardly ever is only one linear block or one circular block used for actual machining.
In general, because an NC program consists of multiple linear blocks and circular
blocks, it is true that direct usage of the above-mentioned equations for generating
speed profile and interpolating is impossible. In ADCAI, interpolation and Acc/Dec
control are applied to the individual block and it is not necessary to consider the
connection of blocks. However, in ADCBI, because the speed at the beginning and
the end of a block should be considered when generating a speed profile, the previous
and the successive blocks should be considered when generating a speed profile and
interpolating.

In the next sections, all possible cases for connection relationships that can occur
between two successive blocks in actual machining will be addressed. The equations
for generating a speed profile for each case will be described.

4.3.2.1 Classification of Continuous Blocks

In Section 4.3.1, we defined the block with constant speed interval as a normal block
and the block without constant speed interval as a short block. From the way in which
two blocks are connected it is possible to classify pairs of blocks into twelve types
depending on the type of block (e.g. normal block and short block) and the difference
of commanded feedrate between the two blocks. However, in the case when a short
block and a normal block are successive, since the speed profile can be generated
with an identical equation regardless of the commanded feedrate of the two blocks,
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a method to calculate the speed profile when the commanded feedrate of the two
blocks is identical will be described. Therefore, the way in which two blocks are
connected can be classified into eight types, as shown in Fig. 4.18. For convenience,
it is supposed that the direction of two successive blocks is identical.

F

tN1 N2
(a) Normal block
      → Normal block
      (Constant speed)

F

tN1 N2
(b) Normal block
      → Normal block
      (Speed : high → low)

F

tN1 N2
(c) Normal block
      → Normal block
      (Speed : low → high)

F

tN1 N2
(d) Short block
      → Normal block
      (Constant speed)

F

tN1 N2
(e) Normal block
      → Short block
      (Constant speed)

F

tN1N2
(f) Short block
      → Short block
      (Constant speed)

F

tN1N2
(g) Short block
      → Short block
      (Speed : high → low)

F

tN1N2
(h) Short block
      → Short block
      (Speed : low → high)

Fig. 4.18 Speed profiles for identical blocks

4.3.2.2 Normal Block/Normal Block, Identical Speed

As shown in Fig. 4.18a, if two blocks with an identical feedrate F are successive,
it is possible to generate the successive speed profile by the methods mentioned in
Section 4.3.1.

Because in Block N1, deceleration is not necessary, the acceleration time TA1 is
computed by Eq. 4.51 and the constant-speed time TC1 is computed by Eq. 4.57.
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TC1 =
L1− F2

2A

F
(4.57)

where, L1 is the displacement of block N1

In Block N2, because at the beginning of the block the tool is moving with feed-
rate F , acceleration is not required and only deceleration is necessary. The decelera-
tion time TD2 is computed by Eq. 4.52 and the constant-speed time TC2 is computed
by Eq. 4.58.

TC2 =
L2− F2

2D

F
(4.58)

where, L2 is the displacement of block N2

When two successive blocks have the same feedrate, the speed profile for the
acceleration interval can be obtained based on Eq. 4.55. The speed profile for the de-
celeration interval can be obtained by Eq. 4.56. Based on the above-mentioned equa-
tions, it is possible to generate the speed profile for two successive normal blocks
with the same feedrate as in Fig. 4.19.

T T T T

F

N1 N2

Time
A1 C1 C2 D2

Velocity

Fig. 4.19 Speed profiles for identical blocks

4.3.2.3 Normal Block (High Speed)/Normal Block (Low Speed)

In the case when two normal blocks with different feedrates are successive as shown
in Fig. 4.18b, the lower of the two blocks’ speeds is defined as the speed at the
corner. For example, if the commanded feedrates of Block N1 and N2 are F1 and
F2, respectively, and F1 is higher than F2, the speed at the corner is defined as F2.
This is done in order to avoid abnormal machining status such as tool breakage due
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to the high speed. In Block N1, acceleration time TA1 is computed by Eq. 4.59 and
deceleration time TD1 is computed by Eq. 4.60.

TA1 =
F1

A
(4.59)

TD1 =
F1−F2

D
(4.60)

In Block N1, the speed profile for the acceleration interval is obtained by Eq. 4.55
and the speed profile for the deceleration interval is obtained by Eq. 4.56 where the
speed at the beginning of deceleration is F1, and the speed at the end of deceleration
is F2. The constant speed time of Block N1 is calculated by Eq. 4.61.

TC1 =
L1− F2

1
2A −

F2
1 −F2

2
2D

F1
(4.61)

In Block N2, the acceleration at the beginning of the block is not necessary be-
cause the speed at the end of Block N1 is decelerated to the commanded feedrate
F2 of Block N2. The deceleration time TD2 is computed by Eq. 4.62 and the speed
profile for the deceleration interval can be obtained by Eq. 4.56 where the speed at
the beginning of deceleration is F2 and the speed at the end of deceleration is 0. The
constant speed time of Block N2 is calculated by Eq. 4.63.

TD2 =
F2

D
(4.62)

TC2 =
L2− F2

2
2D

F2
(4.63)

Based on the above-mentioned equations, it is possible to generate the speed pro-
file shown in Fig. 4.20.

4.3.2.4 Normal Block (Low Speed)/Normal Block (High Speed)

Figure 4.18c shows the case where two normal blocks with different feedrate are
successive and the speed of the first block is smaller than that of the second block.
In this case, the smaller speed between the two block speeds is defined as the speed
at the corner as shown in Fig. 4.18b.

If the commanded feedrate of Block N1 is F1 and the commanded feedrate of
Block N2 is F2, the speed at the corner is defined as F1. In Block N1, acceleration
time TA1 is computed by Eq. 4.64, but it is not necessary to calculate deceleration
because the speed at the end position is F1 and so it is not necessary to decelerate.
The constant-speed time TC1 is computed by Eq. 4.65.

TA1 =
F1

A
(4.64)
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T T T T

F1

N1 N2

Time
A1 C1 C2 D2

Velocity

F2

TD1

Fig. 4.20 Speed profiles for normal blocks with F1 larger than F2

TC1 =
L1− F2

1
2A

F
(4.65)

In Block N1, the speed profile of the acceleration interval can be obtained by
Eq. 4.55 and the speed at constant speed interval is held at the commanded feedrate
F1.

In Block N2, because the feedrate is lower than the commanded feedrate of Block
N2, F2, at the end of Block N1, the speed at the beginning of the Block N2 is not
changed and only deceleration is required at the end of the block. The decelera-
tion time TD2 is calculated by Eq. 4.66 and the constant speed time is calculated by
Eq. 4.67. The speed profile of the deceleration interval can be obtained by Eq. 4.56
where the speed at the beginning of deceleration is F2 and the speed at the end of
deceleration is 0.

TD2 =
F2

D
(4.66)

TC2 =
L2− F2

2
2D

F2
(4.67)

Based on the above-mentioned equations, it is possible to generate the speed pro-
file shown in Fig. 4.21.

4.3.2.5 Short Block/Normal Block with Identical Speed

Figure 4.18d shows the case where a short block precedes a normal block and the
feedrate of the two blocks is identical. In order to generate a speed profile, firstly
the speed at the connection point of the two blocks should be calculated. Unlike the
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Fig. 4.21 Speed profiles for normal blocks with F1 lower than F2

case where two normal blocks are connected, because it is impossible to reach at the
commanded feedrate on a short block, it is first necessary to consider the maximum
reachable speed on the short block. Equation 4.64 is used for calculating this.

F ′ =
√

2AL1 (4.68)

The speed F ′ from Eq. 4.68 is defined as the corner speed and the speed of the
beginning of Block N2. The time spent to reach F ′ from 0 in a short block, TA1, is
computed by Eq. 4.69 and the time spent to reach the commanded feedrate of Block
N2 from F ′, TA2, is computed by Eq. 4.70.

Further, the speed profile of the acceleration interval in Block N1 can be obtained
by Eq. 4.69 and Eq. 4.55 and the speed profile of acceleration interval in Block
N2 can be obtained by Eq. 4.70 and Eq. 4.55 where the speed at the beginning of
acceleration is F ′ and the speed at the end of acceleration is F2.

TA1 =
F ′

A
(4.69)

TA2 =
F2−F ′

A
(4.70)

The deceleration time in Block N2, TD2, is computed by Eq. 4.62 and the constant
speed time is calculated by Eq. 4.71. The speed profile of the deceleration interval in
Block N2 can be obtained by Eq. 4.56.

TC2 =
L2− F2

2 −F ′2
2A − F2

2
2D

F2
(4.71)

Based on the above-mentioned equations, it is possible to generate the speed pro-
file shown in Fig. 4.22.
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Fig. 4.22 Speed profiles for short block/normal block with identical feedrates

4.3.2.6 Short Block/Normal Block with Different Speed

In the case where a short block precedes a normal block are continued and the com-
manded feedrate of the two blocks are different from each other. It is possible to
generate a speed profile by the same method as mentioned in Section 4.3.2.5. The
reason is that it is impossible to reach the commanded feedrate in a short block and
the corner speed is decided based only on the length of the short block, L1.

4.3.2.7 Normal Block/Short Block with Identical Speed

Figure 4.18e shows the case where a normal block precedes a short block and the
feedrate of the two blocks is identical. As mentioned in Section 4.3.2.5, the speed
at the connection point of the two blocks should be calculated based on the length
of the short block in order to generate a speed profile. In this case, because a short
block is executed after a normal block, the start speed of the short block that makes
the speed at the end of the block zero should be calculated. Equation 4.72 is used for
calculating the start speed of Block N2, F ′.

F ′ =
√

2DL2 (4.72)

The speed F ′ from Eq. 4.72 is defined as the corner speed and the speed at the
end of Block N1. the acceleration time of Block N1, TA1, is computed by Eq. 4.73
and the deceleration time of Block B1, TD1, is computed by Eq. 4.74. Further, the
constant speed time, TC1, is calculated by Eq. 4.75.

TA1 =
F1

A
(4.73)
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TD1 =
F1−F ′

D
(4.74)

TC1 =
L1− F2

1
2A −

F2
1 −F ′2

2D

F1
(4.75)

The speed profile of the acceleration interval of Block N1 can be obtained by
Eq. 4.73 and Eq. 4.55. The speed profile of the deceleration interval of Block N2
can be obtained by Eq. 4.74 and Eq. 4.56, where the initial speed at the deceleration
interval, V0, is F1 and the end speed of the deceleration interval is F ′.

TD2 =
F ′

D
(4.76)
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Fig. 4.23 Speed profile for Normal block/Short block with F1 larger than F2

There is only a deceleration interval in Block N2. The deceleration time, TD2,
can be obtained by Eq. 4.76. Figure 4.23 shows the speed profile generated from the
above-mentioned equations.

4.3.2.8 Normal Block/Short Block with Different Speed

When a normal block precedes a short block, the commanded feedrate of two blocks
can be different from each other. In this case, it is possible to generate a speed pro-
file by a method similar to that of a normal block and short block with the same
commanded feedrate, described in Section 4.3.2.7. This is because the corner speed
is decided based on the length of the short block, L2, regardless of its commanded
speed.
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Therefore, for the case that is described in this section, the corner speed F ′ is
computed by Eq. 4.72 and the speed profile is generated in the same way as the
method mentioned in Section 4.3.2.7.

4.3.2.9 Short Block/Short Block with Identical Speed

Figure 4.18f shows the case where two short blocks with identical feedrate are con-
nected. In this case, in order to generate a speed profile, it is first necessary to calcu-
late the maximum feasible speed at the corner, F ′. The end speed of Block N1, F ′1, is
computed by Eq. 4.77 and the start speed of Block N2, F ′2, is computed by Eq. 4.78.

F ′1 =
√

2AL1 (4.77)

F ′2 =
√

2DL2 (4.78)

The smaller of the two speeds F ′1 and F ′2 is selected as the corner speed F ′ and it
is possible to calculate the maximum speed, Fmax, based on F ′. If F ′ is the same as
F ′2, Fmax is calculated by Eq. 4.79 and in the case when F ′ is F ′1, Fmax is calculated
by Eq. 4.80.

F2
max

2A
+

F2
max−F ′2

2D
= L1 (4.79)

F2
max−F ′2

2A
+

F2
max

2D
= L2 (4.80)

If F ′ is F ′2, the acceleration time of Block N1, TA1, is calculated by Eq. 4.81 and
the deceleration time, TD1, is calculated by Eq. 4.82. In addition, the speed profile
can be obtained by Eq. 4.55 and Eq. 4.56 where the initial speed of the deceleration
interval, V0, is Fmax and the end speed of the deceleration interval is F ′. Also, the
deceleration time of Block N2, TD2, is calculated by Eq. 4.76 and the speed profile
of Block N2 can be obtained by Eq. 4.56 where the initial speed of deceleration, V0,
is F ′ and the end speed of deceleration is zero.

TA1 =
Fmax

A
(4.81)

TD1 =
Fmax−F ′

D
(4.82)

Figure 4.24 shows the speed profile generated from the above-mentioned equa-
tions in the case that F ′ is F ′2. In the case that F ′ is F ′1, it is possible to generate a
speed profile in a similar way.
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Fig. 4.24 Speed profile for two short blocks with F ′1 larger than F ′2

4.3.2.10 Short Block (High Speed)/Short Block (Low Speed)

Figure 4.18g shows the case where two short blocks with different feedrates are
connected. As mentioned in Section 4.3.2.6, the corner speed of two short blocks is
decided by the length of the short blocks regardless of the commanded feedrate of
the blocks. Therefore, the speed profile for the case mentioned in this section can be
identically obtained by the method of the case in Section 4.3.2.9.

4.3.2.11 Short Block (Low Speed)/Short Block (High Speed)

Figure 4.18h shows the case where two short blocks are connected and the speed of
the first block is smaller than that of the second block. Although the speed of the two
blocks is different, the method to obtain the speed profile is identical with that of the
case mentioned in Section 4.3.2.9 because the corner speed of the two short blocks
is decided by the length of the short blocks regardless of the commanded feedrate of
the blocks.

During circular-path machining, the speed of each axis is continually changing.
Therefore it is necessary to reduce the speed (feedrate) compared with the linear
path. The change of the axis speed results in mechanical shock and, especially at the
transition point from a circular path to a linear path, large mechanical shock occurs.
The mechanical shock is proportional to the acceleration. The acceleration is propor-
tional to the square of the feedrate and is inversely proportional to the radius of the
circular path. Therefore, it is necessary to restrict the maximum allowable accelera-
tion for a circular path. The allowable speed for a circular path is obtained as below.

4.3.2.12 Overlap Between a Linear and a Circular Profile
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During circular movement, the speed of each axis is computed by Eq. 4.83 and
the acceleration of each axis is computed by Eq. 4.84.

Vx = F cosωt Vy = F sinωt (4.83)

where, ω =
F
R

Ax =−Fω sinωt Ay = Fω cosωt (4.84)

If the radius of the circular path is Ro, the allowable speed of each axis can be
computed by Eq. 4.85. By using Eq. 4.84, the allowable feedrate for the circular path
with radius Rc can be computed by Eq. 4.86.

Fx =
√

AxRo (Ax,Ay : Jakam jaka) (4.85)

Fy =
√

AyRo Fo =
√

F2
x + F2

y

F2
1

Rc
=

F2
o

Ro
, F1 = Fo

√
Rc

Ro
(4.86)

The following is an example of an NC part program that sequentially commands
machining of a linear path-circular path-linear path. Figure 4.25 shows the paths of
the example NC part program. Figure 4.26 shows the allowable feedrate with respect
to the radius of a circular path. Also, Fig. 4.27 shows the actual feedrate in the case
where the commanded feedrate of the circular path is smaller than the allowable
feedrate.

N1 G91 G01 X100. F10000;
N2 G02 X50. Y-50. R50;
N3 G01 Y-100;
N4 M06

4.3.3 Corner Speed of Two Blocks Connected by an Acute Angle

In Section 4.3.2, it is supposed that the direction of two successive blocks is the same.
However, in practice, the direction of two successive blocks can be different from
each other. The different direction of blocks results in acceleration or deceleration
for each axis.

Figure 4.28 shows two successive blocks with different directions. The feedrate
of the first block is F1, the feedrate of the second block is F2 and the angle between
two successive blocks is θ . The acceleration at the corner is computed by Eq. 4.87.
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AC =
F1−F2 cosθ

Tpos
(4.87)

where, Tpos is the sampling time for position control

If the acceleration calculated from Eq. 4.87 is greater than the maximum allow-
able acceleration of the machine tool, a mechanical shock or vibration can occur,
thereby a large machining error is produced. Therefore, a corner speed Fc, which
does not exceed the maximum allowable acceleration, should be calculated using
Eq. 4.88.

Fc =
ATpos

1− cosθ
(4.88)

where, A is the maximum allowable acceleration

Based on the commanded feedrate, the length of blocks, the allowable accelera-
tion and the corner speed from Eq. 4.88, a speed profile can be generated as described
in Section 4.3.2. However, if the acceleration due to the radius of a circular path is
greater than the allowable acceleration, the acceleration that is applied to generate
the speed profile should be modified to be the acceleration calculated from Eq. 4.87.

4.3.4 Corner Speed Considering Speed Difference of Each Axis

As the corner speed control method mentioned in Section 4.3.3 is based on the al-
lowable joint acceleration of the machine tool, it is mainly used for robot control.
In general, machine tools have individual servo motors for each axis and each axis
has an individual allowable acceleration value based on the performance of its servo
motor. In this case, another method for deciding the corner speed is used instead of
the method mentioned in Section 4.3.3.

For convenience of explanation, we define the first block as N1 and the next block
as N2. We define that the start point and the end point of N1 are (XS1,YS1,ZS1)
and (XE1,YE1,ZE1), respectively and the start point and the end point of N2 are
(XS2,YS2,ZS2) and (XE2,YE2,ZE2), respectively. In this case, the speed of blocks N1
and N2 in the direction of each axis are given by Eq. 4.89.
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VX1 = F1 · XE1−XS1

L1
,VY 1 = F1 · YE1−YS1

L1
,VZ1 = F1 · ZE1−ZS1

L1
,

VX2 = F2 · XE2−XS2

L2
,VY 2 = F2 · YE2−YS2

L2
,VZ2 = F2 · ZE2−ZS2

L2
,

(4.89)

where VAi is the A-axis component of velocity of block Ni,

Li is the length of block Ni

The difference in speed along the directions of each axis (ΔVX ,ΔVY ,ΔVZ) is given
by Eq. 4.90 at the corner block where N1 and N2 are joined.

ΔVX = (VX2−VX1),ΔVY = (VY 2−VY1),ΔVZ = (VZ2−VZ1) (4.90)

When we define the maximum allowable change of speed along each axis as
ΔVmx, ΔVmy, ΔVmz, respectively, the smallest of the speed change ratios (Q) is given
by Eq. 4.91.

Q = min

{
ΔVmx

ΔVx
,
ΔVmy

ΔVy
,
ΔVmz

ΔVz

}
(4.91)

Here, if Q is greater than 1, this means that the change of speed is smaller than
the maximum allowable value. If Q is less than 1 it means that there is more than one
axis whose speed change is greater than the maximum allowable value. Accordingly,
if Q is greater than 1, it is necessary to decrease the feedrate of blocks. The end speed
of N1, FE1, and the start speed of N2, FS2 are calculated using Eq. 4.92.

FE1 = Q ·F1,FS2 = Q ·F2 (4.92)

The corner speed from Eq. 4.92 is used to generate a speed profile. As mentioned
in Section 4.3.2, the corner speed is calculated based on the commanded feedrate and
the length of blocks. Next, the speed change of each axis at the corner is calculated
by applying the computed corner speed to Eq. 4.90. Finally, the speed change ratio
is computed using Eq. 4.91 and, if Q is smaller than 1, a new corner speed has to be
calculated. It is possible that the end speed of N1 can be different from the start speed
of N2. Although discontinuity of speed occurs, this does not result in any problem
because the speed change is enough small for a servo motor to follow the changed
speed.

4.4 Look Ahead

Machining speed and machining accuracy are the key factors for the performance
of CNC machine tools. Machining accuracy depends on the ability to follow the
trajectory of the controller. As mentioned in Chapter 3, the accuracy of the machining
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trajectory is inversely proportional to the feedrate and sudden changes of feedrate
result in reduction of accuracy of the CNC equipment.

In the ADCBI type of NCK, the accuracy of machining is very high (theoretically
the error is zero) and sudden change of feedrate is a major factor of machining error.
Therefore, in the ADCBI-type NCK, in order to minimize the machining error, it is
necessary to smooth down change of feedrate and limit the axis speed to an allowable
value. To smooth down the change of feedrate, axes should always be accelerated by
an adequate acceleration value. Consequently, to maximize the performance of CNC
systems it is necessary to maximize the acceleration ability of the CNC system.

As mentioned in the previous section, in the case when two short blocks are con-
nected, the length of two blocks is too short to reach the commanded feedrate and the
resulting speed profile shows a special shape similar to a saw tooth. The reduction
of feedrate results in an increase of the machining time. To overcome this problem
a method of minimizing the reduction of feedrate was introduced by considering the
commanded feedrate and the length of the successive blocks.
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Fig. 4.29 Circular trajectory

For example, assume that the half-circle shown in Fig. 4.29 consists of 15 line
segments, the radius of the half-circle is 10 mm, the commanded feedrate is 400
mm/min, and the allowable acceleration is 9600 mm/min. If the method described
in Section 4.3 is used, the speed profile will be generated as shown in Fig. 4.30.
The reason is that the length of the line segment is 2.094 mm and the length is too
short to reach the commanded feedrate, 400mm/min. As shown in Fig. 4.30, the
maximum reachable feedrate is 141.78mm/min and acceleration and deceleration
were repeated.

To minimize the reduction of feedrate and decrease in machining time for short
blocks, a Look Ahead algorithm has been widely used. The Look Ahead algorithm
enables minimization of the decrease of feedrate by calculating the maximum al-
lowable feedrate and the end feedrate for a current block investigating not only the
current block but also successive blocks.

The latest FANUC controller is able to calculate the end speed of a current block
by pre-interpreting about 1000 blocks. Therefore, it is not necessary to make the end
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Fig. 4.30 Speed profile for circular profile

speed of the current block zero and it is possible to control the speed of successive
blocks depending on the commanded feedrate and the length.

4.4.1 Look-Ahead Algorithm

A Look Ahead algorithm calculates the start speed and the end speed of each block
based on the remaining length of the successive blocks and the maximum allowable
acceleration.

4.4.1.1 Look Ahead with Respect to Length

The start speed of the current block should be a speed that enables deceleration to
the end speed of the current block and is computed by Eq. 4.93

V0 =
√

V 2
f + 2 ·A ·L (4.93)

where, Vf denotes a feasible entry feedrate to the next block, F is the actual feedrate
of the current block, V0 is the feasible entry feedrate of the current block, A is the
maximum allowable acceleration of the machine tool, and L is the length of the
current block.

Vf =
{

V, V < F
F, V > F

(4.94)

Since the entry feedrate to the next block from Eq. 4.93 cannot exceed the com-
manded feedrate, the feasible entry feedrate can be represented by Eq. 4.94.

For example, if the entry feedrate of the current block, V0, is larger than the com-
manded feedrate F , Fig. 4.31a the feasible entry feedrate of the current block comes
to be F and the end feedrate comes to be Vf . Also, the speed profile of the current
block can be represented as shown in Fig. 4.31b.
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Consequently, with sequential computing, the end speed and feasible entry speed
from the look-ahead (pre-interpreted) block to the current block, and finally the start
speed and the end speed of the current block are calculated. Here it is assumed that
the end speed of the last block among the look-ahead blocks is zero.

4.4.1.2 Speed at a Corner

There are two methods for determining the speed between two blocks in a Look
Ahead algorithm. The first is the method based on the angle between two blocks, as
described in Section 4.3.3, and the second is the method based on the speed differ-
ence ratio of axes described in Section 4.3.4.

4.4.1.3 Look Ahead considering Length and Corner

As mentioned in the previous section, the corner speed between two successive
blocks is decided by selecting the smaller value among the corner speeds based on
maximum allowable acceleration and the feasible entry speed from the Look Ahead
algorithm described in Section 4.4.1.1. Figure 4.33 shows the flow chart for deter-
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mining the end speed of the current block considering the length of the block and the
corner speed between two successive blocks.

Set i = N

Determine the start speed
and end speed of the ith block

(Refer Fig. 4.33)

Ve(i  1) = Ve(i)

i = i   1 i > 1
Y

N

Y| Ve(1)   Ve(1) |
2A

2 2

< Stot

Ve(1) = √ Vs(1) + sign×2AStot
2

End

where, sign
= 1  if  Vs(1) < Ve(1)

=   1  if  otherwise N

Fig. 4.32 Flowchart for determining end speed with Look Ahead

In Fig. 4.32, N denotes the number of Look Ahead buffers, Ve(i) is the end speed
of ith block, Vs(i) is the start speed of ith block, A is the maximum allowable ac-
celeration, and Stot is the length of the current block. In addition, the start speed of
the current block is equal to the end speed of the previous block and is used as input
to the Look Ahead algorithm. In the Look Ahead algorithm, calculation of the start
speed and end speed of each block is performed in reverse order from the look-ahead
block to the current block. By comparing the end speed of the current block with the
start speed of the current block, the availability of the end speed of the current block
is checked as follows:

Ve(1)2−Vs(1)2

2A
< Stot (4.95)

If the distance that is required for acceleration or deceleration to the end speed
from the start speed is smaller than the length of the current block, as given by
Eq. 4.95, the end speed of the current block is available. Otherwise, the end speed of
the current block should be calculated again using Eq. 4.96 based on the length and
the start speed of the current block.



150 4 Acceleration and Deceleration

Ve(1) =
√

Vs(1)2 + sign×2AStot (4.96)

where, sign
= 1 i f Vs(1) < Ve(1)
=−1 otherwise

Types of ith block
and (i  1)th block

Calculate the speed (V1)
between line and line block

Calculate the speed (V1)
between line and arc block

Calculate the speed (V1)
between arc and arc block

Y

N

Calculate the length(S) of ith block

Calculate the start speed (V2)
that can be decelerated to

the end speed

Vs(i) = min{V1, V2, VC}

Calculate Vperformance

Calculate Verror

Vc = min{Vperformance, Verror, Vc}

Vs(i) = min{V1, VC}

ith block == line

End

Input: end speed

Fig. 4.33 Flowchart for calculating start speed for Look Ahead algorithm

Figure 4.33 shows the flow chart for calculating the start speed of the ith block
for the Look Ahead algorithm. In the Look Ahead algorithm, it is assumed that the
end speed of the last block used for look ahead is zero. The start speed of the last
block is computed by carrying out the procedure shown in Fig. 4.33. The start speed
calculated by the previous step is set to the end speed of the previous block to the
last block. By repeating the procedure of Fig. 4.33, we can compute the start block
of the previous block to the last block. Next, the procedure, to obtain the start speed
of the current block by using the end speed is described below.

The start speed of the current block is determined based on the angle between the
current block and the previous block. In Sections 4.3.3 and 4.3.4 the methods for
determining the corner speed were addressed in detail and one of them can be used
for calculating the corner speed V1. The start speed that is achievable for the end
speed of the block, V2, is computed based on the length of the block.
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The smallest among V1, V2, and the commanded feedrate is determined as the start
speed of the block. While, if the current block is a circular path, the feasible feedrate
of the circular path as well as the above-mentioned speeds should be computed again.
Because, axes are moving along a circular path, the speed of each axis is changed
continuously and the change of speed is restricted to the acceleration performance of
the machine tool. In addition, in order to decrease the chordal deviation error during
circular interpolation, the circular path should be divided into smaller line segments
and these small line segments make the actual feedrate on a circular path small.
Therefore, for a circular path the feasible feedrate should be calculated based on the
curvature (or radius) and acceleration performance of the machine tool. The feasible
feedrate should be reflected on when computing the start speed.

Equation 4.97 shows the performance index of a machine tool and indicates the
feasible acceleration of the machine tool during circular path machining.

α =
(Vper f ormance)2

R
(4.97)

where, α is a performance index, Vper f ormance is the feasible feedrate on a circular
path, and R denotes the radius of the circular path. We can obtain the maximum
feasible feedrate, Verror, by considering the chordal error using Eq. 4.98.

Verror =
2R× cos−1 RE

R+E

TS
(4.98)

where, E denotes the chordal error.
The minimum of Vper f ormance, Verror, and the commanded feedrate is selected as

the feasible feedrate on the circular path. Finally, the smaller value between the se-
lected feedrate and the corner speed is used as the start speed of the block.

4.4.1.4 Speed within Block

Using the above-mentioned procedure, we can obtain the adequate start and end
speeds of the current block. After calculating the speeds, it is necessary to calculate
the speed at each iteration time of interpolation. Figure 4.34 shows the procedure for
calculating the speed at each iteration time within the block.

In Fig. 4.34, Fi means the speed at the current iteration time, Lrem is the remain-
ing length of the current block, Fc is the programmed feedrate of the block, and α2

denotes the acceleration and deceleration within the block.
What is important during computation of the speed at each iteration time is

whether it is possible to decelerate to the end speed when deceleration begins at
the current iteration time. If the remaining length of the block is enough to deceler-
ate to the end speed and the current speed is smaller than the programmed feedrate,
it is necessary to increase the speed. If the remaining length of the block is enough
to decelerate and the current speed is equal to the programmed feedrate, the speed is
kept. If the remaining length of the block is not enough to decelerate, it is necessary
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Fig. 4.34 Flowchart for calculating block speed

to decrease the speed. By repeating the above-mentioned process at each iteration
time, we can obtain the speed at every iteration time of interpolation.

4.4.2 Simulation Results

If we apply the Look Ahead algorithm whose buffer size is 2 to the example shown
in Fig. 4.29, we can obtain the speed profile shown in Fig. 4.35.
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Fig. 4.35 Look-ahead buffer size 2

In the case that the look-ahead buffer size is 2, in order to compute the start and
end speeds of the current block, only one next block is considered. Because we do
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not know the information about the blocks after the next block, it is assumed that
the end speed of the next block is zero. The feasible entry speed of the next block
is computed as 200 mm/min (=

√
02 + 2×2.094×9600) by Eq. 4.99. When this

feasible entry speed determines the end speed of the current block, the maximum
speed of the current block can reach 245.17 mm/min.

Vs =
√

V 2
e + 2AS (4.99)

Comparing Fig. 4.30 with Fig. 4.35 shows that the Look Ahead algorithm in-
creases the maximum feasible speed and decreases the machining time. Because the
start speed of the first block is zero, the maximum reachable speed of the first block
is 200 mm/min and the end speed of the first block is also 200 mm/min. However, in
the case of the second block, because the start speed is 200 mm/min and the feasible
end speed is 200 mm/min, it is possible to reach 245.17 mm/min.

If the size of the look-ahead buffer becomes 3, the maximum reachable speed
becomes higher and the resulting machining time decreases. Figure 4.36 shows the
speed profile that is generated when the size of the look-ahead buffer is 3. When we
compute the end speeds of the blocks sequentially, the end speeds of the blocks are
0 mm/min, 200 mm/min and 283 mm/min (=

√
2002 + 2×2.094×9600), respec-

tively.
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Fig. 4.36 Look-ahead buffer size 3

If the size of the look-ahead buffer increases to 6, a speed profile that has no speed
fluctuations and looks like a normal block is generated, as shown in Fig. 4.37.

If linear paths and circular paths are combined, it is necessary to compute the
corner speed based not only on the length of blocks but also the angle between blocks
in order to compute the speed of the blocks to be looked at ahead. For example,
assume that there is a part program that has paths shown in Fig. 4.38, and assume
that the programmed feedrate of the paths is 2000 mm/min, the acceleration time is
200 msec, and the maximum allowable acceleration is 200000 mm/min2.
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Fig. 4.37 Look-ahead buffer size 6

Figure 4.39 shows the speed profile considering only the length of the blocks,
while Fig. 4.40 shows the speed profile when both the length of blocks and the angle
between blocks are considered. From Fig. 4.40 we can see that, due to the Cartesian
maximum allowable acceleration, the speed decreases at the corner where the arc
and the line join.
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Fig. 4.38 Look-ahead path
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4.5 Summary

In ADCBI, the speed profile for two successive blocks is generated by considering
the type of the current block (e.g. normal block or short block), regardless of whether
the commanded feedrate of the two blocks is the same or different and whether the
next block is the last block.

Furthermore, unlike a linear path, an arc path generates acceleration and deceler-
ation due to the change of velocity and the acceleration and deceleration generate a
mechanical shock. In particular, the amount of the mechanical shock is proportional
to the acceleration and the acceleration is inversely proportional to the radius of the
circular path and proportional to the square of the feedrate. Therefore, the maximum
allowable acceleration value should be restricted. When the speed profile for the
circular path is calculated it is necessary to compute the acceleration due to the com-
manded feedrate and to compare the acceleration with the pre-specified maximum
allowable acceleration value.

In ADCBI-type NCK, after the speed profile on path is computed the displace-
ment of the tool at every iteration time of interpolation is calculated based on the
speed profile. Therefore, machining error does not occur at corners where two blocks
join. However, if the speed does not sufficiently decelerate when the tangents of two
blocks are different from each other at the corner, mechanical shock occurs. There-
fore, it is necessary to calculate the corner speed that the machine can stand when
the speed profile is computed. In this book, as the method of determining the cor-
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ner speed, two methods were introduced; the first is based on the joint angle of two
successive blocks and the second is based on the maximum allowable ratio of speed
change of each axis. In particular, the second method is typically used for machine
tools.

In ADCAI-type NCK, Acc/Dec control is applied to each axis separately and this
leads to machining error in the case of machining an arc. Because acceleration for the
next block and deceleration for the previous block are done simultaneously near the
corner, machining error is inevitable. However, in ADCAI-type NCK, the feasible
speed at the end of the current block is always monitored by applying the look-ahead
algorithm and monitoring the remaining length of the block. Therefore, it is possible
to calculate the appropriate moment for acceleration or deceleration and to reduce the
machining error within a specified amount. Because of these characteristics, ADCBI-
type NCK is widely used for high-speed machining and ADCAI-type NCK is used
for machining where high accuracy is not important, such as roughing machining.



Chapter 5
PID Control System

The information of a program block for moving the axis of a machine tool passes
sequentially through the interpreter, the interpolator, and the Acc/Dec controller be-
fore being finally transmitted to the position controller. The position controller has
the displacement at each interpolation interval from the interpolator as input and
performs feedback control to minimize the position error. In this chapter, the Pro-
portional Integral Derivative (PID) controller, which is widely used in industry, will
be introduced and gain tuning for PID control will be addressed. In addition, the
feedforward controller for high-speed applications will be introduced.

5.1 Introduction

In general, the axis control module for CNC systems of machine tools can be classi-
fied into a three-tier architecture as shown in Fig. 5.1. The control module consists of
the adaptive control module and the error compensation module in the upper layer,
the interpolation module in the middle layer, and the spindle control module and
servo control module in the lower layer.

The adaptive control module in the upper layer generates optimized cutting con-
ditions such as spindle speed and feedrate based on the programmed spindle speed,
the programmed feedrate, measured actual cutting force, and the cutting capacity of
machine tools. Accordingly, the adaptive control module plays the role of increasing
Material Removal Rate (MRR) and decreasing machining time to increase produc-
tivity.

Another module in the upper layer, the error compensation module, carries out the
compensation of error factors that cause deviations from the programmed path. This
module handles various kinds of error including the heat from moving elements, the
volumetric error of machine tools, tool wear, and tool deflection.

The optimized and compensated feedrate and position instructions from the upper
layer are transmitted into the interpolator in the middle layer. Finally, the interpolated
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Fig. 5.1 Three-tier CNC system architecture

position instructions for each axis are fed to the servo control module in the lower
layer.

The spindle speed optimized by the adaptive control module in the upper layer is
transmitted to the servo control module in the lower layer. The servo control mod-
ule and the spindle control module generate control instructions using appropriate
control algorithms and the instructions generated are sent to the drivers.

As mentioned above, a fully functional CNC system consists of various control
modules that provide many functions. Practically, however, the majority of CNC sys-
tems include control systems that consist of the interpolation module of the middle
layer and the servo and spindle control modules of the lower layer.

In this chapter, a position control method in the servo control module for control-
ling the machine tool axes will be addressed. Except for the interpolation module,
the other modules are addressed in other books and the interested reader should refer
to these.

5.2 The Servo Controller

The servo controller, which enables the movement control of each axis based on po-
sition commands from the interpolator, is the last one in the NCK system. The servo
controller should be able to control speed over a wide range, from fast speed for high-
speed machining (m/min) to slow speed for high-accuracy machining (mm/min).



5.2 The Servo Controller 159

Furthermore, it should also guarantee practically reasonable accuracy and have ro-
bustness against external disturbances.

To fulfill the above-mentioned requirement, a closed-loop control, where the ac-
tual speed and position data are monitored and fed back to the servo controller, is
commonly considered. In most systems actuated by servo motors, because the posi-
tion and speed instructed to the servo motors are practically different from the actual
values, the servo controller includes a feedback control loop where the actual po-
sition and speed data from the servo motors are fed back to the controller, and the
controller generates commands to compensate for errors between commanded values
and the feedback data. Therefore, the performance of the position controller depends
on the control algorithm and the position and speed detectors as well as the control
targets, such as motor, coupling, ball screw, slider, etc.

The closed loop for controlling the axis of the CNC system forms a cascade struc-
ture that is connected with a position, speed and current loop arranged in series, as
shown in Fig. 5.2. The current loop is located at the innermost position of the loop,
the speed control loop encompasses the current loop and the position control loop
encompasses the speed control loop.

In the cascade-style control architecture it is easy to tune the characteristics of
each control loop. However, it is necessary first to guarantee the stability of the inner
control loop for the stability of the entire control loop and to minimize the depen-
dency between the outer loop and the inner loop. To achieve the above-mentioned
purpose, the inner loop should be set to perform with a faster system response than
that of the outer loop by tuning the gains of each control loops.

In a CNC system, generally the NCK task is the outermost loop and performs
only the position control with slowest response; while the speed control and current
(torque) control are executed in a servo drive system. However, recently the con-
ventional control configurational has no longer been preserved in the CNC system
industry. All control loops can be implemented in the drive system, or the position
and speed control loop are performed within the NCK task, while only the current
loop for the fastest response is performed within the drive system. This can be cho-
sen on the basis of the hardware capacity of the NCK and driver system, and the
application purpose of the CNC system.

Kpp Kpp
Kis

S+___ current loop Motor/Slide/
Machining Process

+

-
+

- S
1

speed
controller

position
controller

Fig. 5.2 Cascade structure for closed-loop control

Accordingly, the movement of the table or the tool attached to the machine tool
depends on the response characteristics of the position loop, which is located at the
outermost loop and has the slowest response. The slow response of the position loop
creates a following error in the control system, thereby increasing the following er-
ror and decreasing the machining accuracy of corners or circular movements by ma-
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chines having more than two axes. Therefore, the control parameter of the position
loop should be set to achieve system response such as a high machining accuracy
and short machining time. However, the cascade-style control architecture has a fun-
damental drawback that restricts the response of the position loop.

5.3 Servo Control for Positioning

A CNC system is widely used for the position control of different positioning ma-
chines including robots, chip mounters, semiconductor handlers as well as machine
tools. The servo control system of the positioning machines is the core and most
important part for the machine performance and quality, and the control strategy of
each axis results in various positioning errors. Generally, the axis control strategy
of a CNC system can be classified into point-to-point control, tracking control, and
contour control. In point-to-point control, the most important factor is the elapsed
time for moving from one point to another, ignoring the contour error during axis
movement. In the case of tracking control, the most important factor is to minimize
the following error which is the amount of deviation from the reference trajectory.
While contour control involves minimizing the contour error occurring with simul-
taneous movement of more than two axes.

The trajectory and contour error appearing in the multi-axis machine tools are
shown in Fig. 5.3. P is the current position, and R denotes the reference point to go
to. The purpose of tracking control is to minimize the position errors of each axis, ex,
ey, which are the deviation of the current position from the reference point. On the
other hand, contour control is implemented to minimize the contour error, ε , which
is the error of the current position to the desired contour. Therefore, the position error
and contour error are used as the indices for evaluating the accuracy of the controlled
path.

The position error is the linear distance between the actual tool position and the
reference point, and is represented like Eq. 5.1 by using the position error of each
axis.

e =
√

(ex)2 +(ey)2 (5.1)

where, e denotes the position error and ex and ey denote the position error of X-axis
and Y-axis respectively. The contour error, ε , is the minimum distance between the
actual tool position and the desired path, as shown in Fig. 5.3.

Minimising the position error of each axis does not always mean the reduction of
the contour error. In the case of cutting machine tools, the accuracy of the final ma-
chined shape is the important factor, therefore reduction of the contour error should
be considered more seriously than reduction of the position error.

In general, point-to-point control is used for controlling the movement to the com-
manded position within a short settling time, regardless of the intermediate path, by
utilizing a P controller or PI controller. Compared with point-to-point control, how-
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ever, tracking control and contour control have many problems to be considered. Be-
cause of inherent system specific errors, including disturbance, friction force, back-
lash, distortion of table, and the characteristics of the servo system as well as dynamic
errors due to high speed operation of the servo system, acceleration or deceleration
operation, and the change of movement direction, some difference between the de-
sired path and the actual controlled path cannot be avoided during contour machining
by multi-axis machine tools.

Therefore, in the position controller of a CNC system there is a variety of control
algorithms, including the P controller, PID controller, fuzzy controller, feed-forward
controller, predictive controller, and cross-coupling controller that have been intro-
duced to support point-to-point control, tracking control, and contour control.

Compared with the P controller, feedback controllers such as the PID controller
and the Fuzzy controller decrease the position errors of each axis. The feed forward
controller is useful for reducing the multi-axis error by reducing the axial error of
each axis, and finally contributes to reduction of the contour error. The cross coupling
controller performs accurate control in real time by generating control commands to
reduce contour error based on a contour error model. In this textbook, the causes of
various errors and algorithms for reducing the position error will be addressed.

5.4 Position Control

The last task of NCK is the position control task where the reference position from
the interpolator and the actual position fed back from a servo motor (encoder) are
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compared and control to decrease the difference between these two positions is car-
ried out.

A PID controller and a feedforward controller are typical algorithms for carrying
out the position control task and they will be described in the following sections.

5.4.1 PID Controller

Although various modern control theories have been developed, the PID controller
has been widely used in industry due to its simple architecture and ease of imple-
mentation in hardware or software. Furthermore, the PID controller can easily be
implemented, even when an accurate mathematical model of target system is un-
known, and realizes excellent control performances, including target-value following
or disturbance rejection.

However, the PID controller can only be used for time-invariant linear systems
and it is necessary to tune gains accurately based on the dynamics of the process.
When the process dynamics are changed due to change of the system weights, the
gain tuning process should be redone. In addition, the PID controller has the lim-
itation that it can be applied only for SISO (Single Input Single Output) systems.

Because CNC systems generally control more than two axes, they can be regarded
as systems with more than one input and output. However, it is possible to use an
individual PID controller for each axis because each axis of machine tools is actually
independently controlled based on the interpolated data of every tiny interpolation
time interval. Accordingly, each axis is controlled by a PID controller having a single
input and output port.

The PID controller can be utilized as a P controller for only proportional (P)
control actions, an I controller for only integral (I) control actions, and a D controller
for only derivative (D) control actions. It can also be used as a combination of single
controllers such as a PI controller, PD controller as well as PID controller. Actually,
for position control of machine tool axes, a P controller or a PI controller having a
small integral gain has been widely used.

Gc(s) = Kp +
Ki

s
+ Kds (5.2)

As shown in Fig. 5.4, a PID controller generates the output u as an input of the
process, which makes the error (difference between the process output feedback and
a reference input) zero. The transfer function of the PID controller including the
proportional control action, integral control action, and derivative control action is
represented by Eq. 5.2. Therefore, the design of a PID controller involves the deter-
mination of the proportional gain Kp, the integral gain Ki, and derivative gain Kd .

The proportional control action plays the role of handling the immediate error.
Through the proportional control action, it is possible to decrease the rise time of a
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system and the steady-state error. However this causes overshoot increase and steady-
state error.

The derivative control action has the role of handling errors based on learning
from the past. With the derivative control action it is possible to decrease overshoot
and settling time. The integral control action has the role of handling future errors.
Using the integral control action, it is possible to remove a steady-state error and
decrease the rise time of a system. However, this causes an increase of overshoot and
settling time.

PID Controller Processr
+

e u y

Fig. 5.4 Block diagram of position control in PID

Gc(s) = Kp(1 +
1

Tis
+ Tds) (5.3)

The transfer function in Eq. 5.2 can be rewritten as Eq. 5.3 where the integral time
Ti and derivative time Td are defined as in Eq. 5.4a and Eq. 5.4b, respectively.

Ti = Kp/Ki (5.4a)

Td = Kd/Kp (5.4b)

The following gives more details about control actions of each component in a
PID controller. First, in P control, meaning proportional control, the system error
is multiplied by a constant P, called the proportional gain, in order to compensate
for the system error. Therefore, larger proportional gain typically results in faster
response of a system and decreases the time spent in going to the reference point.
However, because large proportional gain makes it impossible to regulate accurately
the system error, there is continuous vibration and abnormal noise. Therefore, the
amount of the proportional gain is restricted due to this reason.

Second, I control, meaning integral control, is used in the case of not going to
the reference point after transition to the steady state. In I control, the error is in-
tegrated over a period of time, multiplied by a constant I, called the integral gain,
to reduce the integrated errors from the past. Larger integral gain results in faster
response during transition states. Accordingly, it is necessary to use an integral gain
within an adequate range because large integral gain results in excessive overshoot
or undershoot.

Third, in D control, meaning derivative control, the first derivative over time (the
slope of the error) is calculated, and this derivative is multiplied by a constant D,
called the derivative gain, for damping the system and removing the vibration of
a system during a steady state. Larger derivative gain results in a faster response.
However, large derivative gain causes vibration of a system. Therefore, the amount
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of the derivative gain should be restricted because the first derivative of position over
time is sensitive to noise.

Above, the effect of different types of gain on the PID controller is explained.
Therefore, in practice, a variety of combinations of P control, I control, and D control
has been selectively used according to the purpose for which the control is used.
Typically, the PI controller which has a relatively fast response has been widely used
because D control has difficulty in gain tuning and easily results in vibration.

The transfer functions for the proportional controller, the integral controller,
and the derivative controller defined in a continuous time domain can be approxi-
mated by the transfer functions for the discrete time domain for digital control as in
Eqs. 5.5, 5.6 and 5.7.

G(s) = Kp⇔ G(z) = Kp (5.5)

G(s) =
Ki

s
⇔G(z) =

KiT
1− z−1 (5.6)

G(s) = Kds⇔ G(z) =
Kd(1− z−1)

T
(5.7)

By combining the above three approximated equations, the transfer function for
the PID controller for discrete time domains can be approximated as in Eq. 5.8.

Gc(z) =
k0 + k1z−1 + k2z−2

1− z−1 (5.8)

where, k0 = kp + kiT + kd
T , k1 = −kp− 2kd

T , and k2 = kd
T and T denotes the iteration

time for position control. Accordingly, the output of the digital PID controller with
proportional, integral, and derivative control can be represented as the difference
equation, as in Eq. 5.9.

u
e

=
k0 + k1z−1 + k2z−2

1− z−1 (5.9a)

or, u(n)−u(n−1)= k0e(n)+ k1e(n−1)+ k2e(n−2) (5.9b)

Equation 5.9b can be rewritten as Eq. 5.10.

u(n) = u(n−1)+ k0e(n)+ k1e(n−1)+ k2e(n−2) (5.10)

Consequently, in the PID controller for the discrete time domain, the input of
the controller at the current time is computed based on the controller’s input at the
previous iteration time, the error at the current time, the error at the previous iteration
time (one step behind the current sampling time), and the error at the time before that
(two steps before the current sampling time).

For example, when the PID controller is used for controlling a rotary table, the
block diagram for position control of the complete system is as shown in Fig. 5.5.
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Assume that the transition function for the particular axis of a rotary table is defined
as in Eq. 5.11.

Gc(z)command err u pos
Gm(z)

Fig. 5.5 Block diagram for controlling rotary table system

Gm(z) =
a1z−1 + a2z−2 + a3z−3

1 + b1z−1 + b2z−2 + b3z−3 (5.11)

When Eq. 5.11 is expressed as the relationship between the controller output sig-
nal u and the actual position, pos, the discrete form with respect to the current itera-
tion time, k, can be denoted as in Eq. 5.13.

pos(k) = b1 ∗ pos(k−1)+ b2∗ pos(k−2)+b3 ∗ pos(k−3)+ (5.12)

a1 ∗ u(k−1)+ a2∗u(k−2)+a3∗u(k−3)

The actual position data detected from the servo is fed back as the input to the PID
controller. The actual position data is compared with the command position data from
the interpolator and the position error between the actual position and the command
position data is input to the PID controller. Finally, the PID controller generates the
output signal u for reducing the error, and signal u is fed to the controlled system
Gm(z).

According to the above example, the program for realizing the PID controller for
position control can be written as follows:

Procedure PID Controller()
{
/ Setting process variables /

a1=0.007001; a2=0.017284; a3=0.002475;
b1=1.782; b2=-0.906; b3=0.124; /Process parameters/
tpos=0.001; / PID gain setting /
zkp=2.0; zki=0.0001; zkd=0.0;
/Here, only PI schema is applied, I gain needs to be very low./
zk0=zkp+zki*tpos+zkd/tpos;

zk1=-zkp-2*zkd/tpos;
zk2=zkd/tpos;

/ Initialisation of control variables /
err1=0.0; err2=0.0; command=0.0; feedback=0.0;
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pos=0.0; pos1=0.0; pos2=0.0; pos3=0.0;
u=0.0 u1=0.0; u2=0.0; u3=0.0;
err=0.0; err1=0.0; err2=0.0;

begin (n=1,200)
pos command(n)=10.0-real(n)*0.02; /Generation of position/

/command for simulation/
pos command (n+100)=8.0+real(n)*0.02;

end / Position control loop /
begin (n=1, 300)

command= pos command (n); /Command value for position control/
feedback=pos ; /Position feedback/
err=command - feedback; /Error/
u=u1+zk0*err+zk1*err1+zk2*err2; /PID control algorithm, Eq. 5.10/
/Transfer equation for rotary table, Gm, Real position simulation/
/by Eq. 5.10/
pos=b1*pos1+b2*pos2+b3*pos3+a1*u1+a2*u2+a3*u3;
/Update for the next position loop/
pos3=pos2; pos2=pos1; pos1=pos;
u3=u2; u2=u1; u1=u;
err2=err1; err1=err;

end
}

As shown above, it is easy to implement the PID controller for motion control.
However, the performance of the PID controller depends highly on the P, I, and D
gain according to the given environment. Whenever an operating point or the charac-
teristic of the target process changes, it is necessary to tune the gains. The way to set
the P, I, D gain is called the “gain tuning method” and an expert is typically required
for gain tuning.

In the next section, a gain tuning method for the PID controller will be introduced.

5.4.2 PID Gain Tuning

If adequate gain for the PID controller is not set, the system response may become
slow, vibration may occur, or the desired accuracy may not be achieved. Therefore,
setting adequate gains is an important design factor.

As the gain tuning method for a PID controller, there are the Ziegler–Nichols
method, where a mathematical model for the target process are not necessary, and
the Relay method. For these methods, a user with a lot of experience should tune P, I,
D gain by trial and error and, therefore, it takes a long time to complete gain tuning.

As gain tuning methods based on a target process model, there are the Frequency
response method, the Pole placement method, and the Pole-zero cancelation method.
However, because of the complication of the mathematical model for the target pro-
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cess, it is difficult to derive the model of a target process in practice. Furthermore,
because the experiment for obtaining frequency response is complicated and it is dif-
ficult to obtain an accurate result, the accuracy of the gains tends to decline in the
case when the degree of a system is high. Also, because of the disturbance due to
the load, the pole and zero in the system are not exactly canceled and thereby, the
performance of the system declines.

Recently a controller with an auto tuning function has been developed that tunes
the gains automatically to help users. The auto-tuning function in this controller per-
forms internally advanced gain tuning methods including those mentioned above.

5.4.2.1 The Ziegler–Nichols Method

The Ziegler–Nichols method, which is one of the experiment-based gain tuning
methods, is a method where the target process is tested as an open loop plant and
the P, I, and D gains related to the characteristic of the transient response are cal-
culated by simple formatted equations. This gain tuning method can be executed in
two ways; the first is the step response method based on the response curve of the
process and the second is the ultimate sensitivity method.

The step response method is a gain tuning method using the damping ratio of 0.25
from experiment and experience where the dominant transition diminution becomes
25% of the previous one after one cycle in the time domain. This method can be
applied to a safe system where oscillation does not occur because the main polar-
pole of the target process is not a complex conjugate, and typically a system having
an S-shaped response curve satisfies this condition.

After the step pulse is applied to the system, the S-shape response curve is
achieved. By analyzing the S-shape response curve, various characteristic param-
eters (response delay time, time constant) can be extracted, and, finally, the gains for
the PID controller are calculated by the equations shown in Table 5.1.

The ultimate sensitivity method is useful for a target process that has poles at the
origin or unstable poles resulting in system oscillation. For the the ultimate sensi-
tivity method, first set Ti = ∞, Td = 0 in Eq. 5.3, and increase the proportional gain
step by step. When system oscillation is detected, a critical gain (Ku) and critical
frequency (Tu) can be extracted. Finally, the PID controller’s gains are obtained by
the equations shown in Table 5.1. If system oscillation does not occur, even when the
proportional gain is increased, this method cannot be applied.

The Ziegler–Nichols method is good and simple for gain tuning, but needs a fine
tuning process by a tuning expert. Also, it cannot achieve satisfactory control perfor-
mance in the case of a system having small damping characteristics.

As an automatic gain tuning method for a PID controller, a relay method is com-
bined with the Ziegler–Nichols frequency response method to extract the critical gain
and critical frequency. Besides these, various techniques, including adaptive control
theory, optimization theory, and fuzzy control theory have previously been devel-
oped. Please refer to the bibliography for details of each technique. In this book, the
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Table 5.1 Ziegler–Nichols Method

Control Step Response Ultimate Sensitivity Method
Condition Step response has S-shape As proportional gain

increases, output oscillates
Procedure 1. By inputting step pulse 1. By setting Ti = ∞ and

to target, generate Td = 0 in closed loop system,
S-shaped response. activate only proportional
2. Draw tangent line on control loop.
point of inflection of 2. Until output c(t) keeps
output. From intersection oscillating, regulate Kp

points where tangent line 3. Proportional gain at
meets time axis and moment of oscillation is kept
response K, calculate to critical gain Ku. Set
response delay time τd critical frequency Tu to
and time constant τ frequency at this moment.

Output
response

t

C(t)

k

τd τ

Tu

t

C(t)

Ctrl. P Kp = τ/τd Kp = 0.5Ku

eqn. PI Kp = 0.9τ/τd ,Ti = 3.3τd Kp = 0.45Ku,Ti = 0.8Tu

PID Kp = 1.2τ/τd ,Ti = 2τd , Kp = 0.6Ku,Ti = 0.5Tu

Td = 0.5τd Td = 0.125Tu

relay method that is commercially applied in the industrial field, will be explained in
detail.

5.4.2.2 Relay Gain Tuning

The Ziegler–Nichols method mentioned above has the limitation that it cannot be
applied to a system that is not critically oscillated with only proportional gain con-
trol. To overcome the non-oscillating problem, a relay gain tuning method was in-
troduced. In this method, a relay is utilized for system oscillation by force. When
oscillation occurs, the limits of frequency and amplitude are extracted from the sys-
tem response.

The circuit for the relay-based automatic gain tuning method consists of the con-
ventional PID controller, a relay, and a switch for switching reference input. The
relay and the switch are located in front of the PID controller, as shown in Fig. 5.6.

The difference between the reference input, r, and the process output, y, is input to
the relay. The output of the relay is directly input to the PID controller. At the initial
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stage of gain tuning, the switch is connected to contact a, thereby the reference input
bypasses the relay and is directly input to the PID controller. Therefore, a non-tuned
PID controller is operated.

At the next automatic tuning stage, the switch is connected to the contact b, and
the difference between the reference input and the process output is fed to the relay.
System oscillation due to the limit cycle phenomena is induced, and the ultimate
frequency and amplitude are extracted for automatic tuning of the PID gains.

PID Controller Process
r

a

b

+ +
e u y. .

Fig. 5.6 Circuit for relay-based automatic gain tuning

The automatic gain tuning stage can be done as shown in Fig. 5.7a. The relay is
modeled as a system with gain KR. Furthermore, GC(s) and GP(s) mean the transfer
transition function of the PID controller and the process, respectively. The error can
be expressed as Eq. 5.13.

e = KRr− y−KRy = KRr− (1 + KR)y (5.13)

If Fig. 5.7a is arranged as the form of the rightmost equation of Eq. 5.13, it can
be denoted as Fig. 5.7b, and the loop transfer function is (1 + KR)GC(s)GP(s).

+
+ e y. .

r KR Gc (s) Gp (s)
(a)

+ e y
.

r KR Gc (s) Gp (s)
(b)

1+KR

Fig. 5.7 Block diagrams of gain setting

While the gain of a relay is expressed using the describing function of non-linear
system theory as Eq. 5.14.
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KR =
4d
πa

(5.14)

where, a is the amplitude of the process output and d denotes the amplitude of the
relay.

At this stage, the process transfer function is assumed to be as in Eq. 5.15 which
is used in the Ziegler–Nichols method and briefly represents the characteristics of
the process.

Gp(s) =
e−τs

Tps
(5.15)

where, Tp is the time constant and τ stands for the dead time.
On the other hand, the transition function of the PID controller can be represented

as in Eq. 5.16.

GC(s) = KC

(
1 +

1
Tis

)(
Tds+ 1
αTds+ 1

)
(5.16)

where, Ti and Td , respectively, denote the integration time and derivative time and α
stands for derivative gain.

If oscillation is continuously induced at the moment that the relay is connected
with the PID controller and the automatic gain tuning stage begins, the frequency
and amplitude of the induced oscillation are derived as in the following equations,

arg [(1 + KR)GP( jω0)GC( jω0)] = (5.17)

arg

[
(1 + KR)

e−τs

Tps

(
KC(Tis+ 1

Tis

)(
Tds+ 1
αTds+ 1

)]
s= jω0

= −π

|(1 + KR)GP( jω0)GC( jω0)| = (5.18)∣∣∣∣(1 + KR)
e−τs

Tps

(
KC(Tis+ 1

Tis

)(
Tds+ 1
αTds+ 1

)∣∣∣∣
s= jω0

= 1

where ω0 is the oscillation frequency. The dead time τ and time constant Tp which
show the characteristic of the process can be found using Eqs. 5.19 and 5.20.

τ =
tan−1 (Tiω0)+ tan−1 (Tdω0)− tan−1 (αTdω0)

ω0
(5.19)

Tp =
(1 + KR)KC

√
T 2

i ω2
0 + 1

√
T 2

d ω
2
0 + 1

Tiω2
0

√
α2T 2

d ω
2
0 + 1

(5.20)
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In order to compute PID gains by the estimation of the dead time and time con-
stant from Eqs. 5.19 and 5.20, an ultimate gain and frequency are necessary to use
the equation of the response curve of the Ziegler–Nichols method mentioned in Ta-
ble 5.1. In the case that the Ziegler–Nichols gain tuning method is used, the rela-
tionships between those parameters, the frequency and the amplitude are given by
Eqs. 5.21 and 5.22.

arg [GP( jωu)GC( jωu)] = arg

[
Ku

e−τs

TPs

]
s= jωu

=−π (5.21)

|GP( jωu)GC( jωu)|=
∣∣∣∣Ku

e−τs

TPs

∣∣∣∣
s= jωu

= 1 (5.22)

where, ωu denotes an ultimate frequency. From Tu = 2π/ωu, the ultimate frequency
can be obtained from Eq. 5.23.

Tu = 4τ (5.23)

Also, the ultimate gain is given by Eq. 5.24.

Ku =
2πTP

Tu
(5.24)

Finally, by applying Eq. 5.23 and Eq. 5.24 to the ultimate sensitivity method,
adequate PID gains can be obtained.

The automatic gain tuning method mentioned above is summarized in Fig. 5.8. It
is assumed that the gains of the PID control loop are roughly tuned manually before
executing automatic gain tuning, as depicted in the first and second steps of Fig. 5.8.

In the third step, the relay is connected at the set point input of the PID control
loop. The fourth step means that the process output induces continuous oscillation as
the response of the system when the relay is applied.

In the fifth step, the frequency and the amplitude of the induced oscillation are
measured and stored. In the sixth step, based on measured parameters, the dead time
and the time constant are computed using Eq. 5.19 and Eq. 5.20.

By substituting the dead time and the time constant for Eq. 5.23 and Eq. 5.24,
the ultimate gain and amplitude are computed. Thereby, finally, the PID gains are
computed by the equations of Ziegler–Nichols’s ultimate sensitivity method.

In the seventh step, by decoupling the relay, the set point is coupled to the input
of the PID control loop. In the eighth step, the new PID gains obtained from the sixth
step are applied to the PID control loop.

5.4.3 Feedforward Control

The feedback controller, which is widely used as a servo controller, works based
on the difference between input and output. The PID controller, being one type of
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Crudely tune the PID control loop by any suitable method

PID control loop is running

Apply a relay at the set point input of PID loop

PID control develops a sustained oscillation with the relay

Measure period and amplitude of the sustained oscillation

Calculate new PID parameters based on the measured values

Decouple the relay and couple the set point to the input of PID

Apply the new PID parameters to the PID controller

Fig. 5.8 Automatic gain tuning method

feedback controller, mentioned in the previous section, is very stable and robust even
when there is disturbance. However, tracking error cannot be avoided when only a
PID controller is used. This problem results in a poor cutting surface or inaccurate
shape of the machined product of the CNC machine tool.

As an alternative, a feedforward controller is used together with a feedback con-
troller in order to make up for the feedback controller’s disadvantage and enable a
system to track the desired reference path. The feed-forward controller does not work
based on the difference between the commanded point and the actual point, as does
the feedback controller, but works based on a pre-specified system model. As the
feedforward controller is an open-loop type, it generates the output with calculations
based on the pre-specified system model in order to increase the response charac-
teristics of the complete system. Because of the error in the system model, perfect
control of the complete system cannot be achieved. Therefore, it is typical to use
feedback control and the feedforward control together.

The purpose of the feedforward control method is to overcome the response limi-
tations of a position control loop and feedforward control belongs to tracking control
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that enables the system to track the desired path by minimizing the tracking error. As
shown in Fig. 5.9, the feedforward controller directly feeds the controller output to
the inner loop by skipping the outer loop, which uses the fact that the response of the
inner loop is faster than the outer loop in a cascade loop structure. Consequently, the
feedforward scheme improves the response characteristics of the outer loop.

Feedforward
Controller

Xw

Controller Inner Loop
XM

+ - +

+

Fig. 5.9 Feedforward control placement

The feedforward control method can be classified into two types from the point
of view of the loop structure.

1. After modifying the reference input, the modified input is fed to the feedback
control loop, as shown in Fig. 5.10a.

2. The reference input is directly fed forward to the drive unit in the feedback control
loop, as shown in Fig. 5.10b.

In the first type, G−1
0 (z), the inverse of the transfer function of the complete sys-

tem including the feedback loop, G(z), is set as the transfer function of the feedfor-
ward control loop. Since the total transfer function of the complete system is set as
G−1

0 (z)G(z) = 1, the actual controlled position and the desired position can become
equal. In the second type, the transfer function of the feedforward controller is set
to be the inverse of the transfer function of the drive unit, D−1

0 (z). Therefore, the
transfer function of the entire control loop is written as Eq. 5.25.

GC(z) =
D−1

0 (z)D(z)+ H(z)D(z)
1 + H(z)D(z)

(5.25)

Consequently, if D−1
0 (z)D(z) = 1 is satisfied, the actual position and the desired

position have come to be the same. In the first type, the inverse transfer function
is very complex because the transfer functions of the feedback controller and the
drive module are included in the inverse transfer function. However, when the inverse
transfer function (G−1

0 or D−1
0 ) has unstable poles, modification of the feedback con-

troller is necessary. For modification of the feedback controller, the first type is more
suitable than the second.

As typical techniques of the first type, ZPETC, IKF, causal FIR filter, and non-
causal FIR filter will be described in the following subsections.
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Fig. 5.10 Feedforward control structure

5.4.3.1 ZPETC, Zero Phase Error Tracking Control

Generally, the design of the feedforward controller is based on the transfer function
of the entire system after designing the feedback controller. In considering Fig. 5.10a,
‘R’ denotes the desired path from the interpolator and ‘E’ denotes the error, the
difference between the modified input from the feedforward controller and the output
of process.

The purpose of the feedforward controller is to make P(k) and R(k) equal, or to
minimize the difference between them if it is impossible to make P(k) = R(k).

If the feedforward controller is designed as the inverse of G(z) when G(z) is a
minimum-phase system where poles and zeroes are stable, the transfer function de-
noting the relationship between the input and the output results in 1, which means
that the system traces the desired position correctly. However, the system is not al-
ways a minimum-phase system and some systems can have unstable zeroes. Further-
more, unstable zeroes can be produced when a continuous time system is transformed
into a discrete time system, even if the system in the continuous time domain has no
unstable zeroes.

The unstable zeroes are located in the left half of the Z-plane of the discrete time
domain. In the case of a non-minimum phase system, if the feedforward controller
is designed as the inverse of G(z), it makes the system unstable because the feed-
forward controller itself can have an unstable pole and the output of the feedforward
controller is unlimited. Therefore, for a non-minimum phase system, it is necessary
to make the transfer function of the entire system close to 1 without making the sys-
tem unstable. Since G(z) is the transfer function including the feedback controller
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and is designed to make the system stable, the poles of G(z) are stable, in general.
However the transfer function can include unstable zeros because the zero of G(z) is
not restricted. The unstable poles play a role in the poor performance of the system.
Therefore, the feedforward controller is an effective way of removing the unstable
zeroes. The typical algorithm for this is ZPETC (Zero Phase Error Tracking Control).

In ZPETC, the numerator term of the transfer function of a closed loop can be
divided into terms including only the stable zeroes Bs

c(z
−1) and terms including only

the unstable zeroes Bu
c(z−1), as shown in Eq. 5.26.

Bc(z−1) = Bs
c(z
−1)Bu

c(z
−1) (5.26)

Now, the ZPETC feedforward controller can be represented as follows by utilizing
the special numerator term.

G−1(z) =
zdA(z−1)Bu

c(z)
Bs

c(z−1)(Bu
c(1))2 (5.27)

In consequence, the entire transfer function can be summarized as follows,

Gzpetc(z) =
Bu

c(z)B
u
c(z
−1)

(Bu
c(1))2 (5.28)

We can understand that the phase difference of the transfer function from the de-
sired path to output is zero because the transfer function results in the multiplication
of two conjugating complex numbers. This means that the output traces the input
with no time delay, the gain in the steady state is one and the error in the steady state
becomes zero. When the transfer function of a closed loop has an the zeroes located
on the left half of the plane, the gain increases. This means that ZPETC can have the
gain error in the high-frequency range instead of making the phase difference zero.
On the other hand, ZPETC is a good algorithm for building good characteristic by
using small information in the low frequency range. The ZPETC requires an accu-
rate system model, which is somewhat difficult, and shows poor tracing performance
when the desired trajectory includes a fast transient shape such as at sharp corners.
Furthermore, the inverse transfer function of the feedforward controller may require
D/A converters or driving motors capable of handling high voltage, which is practi-
cally limited by the maximum output of D/A converter or the maximum voltage of
the motor.

5.4.3.2 IKF, Inverse Compensation Filter

The IKF(Inverse Compensation Filter) was introduced by Weck to solve the corner-
tracing problem of ZPETC. As shown in Fig. 5.11, a low-pass filter is added at the
front of the feedforward controller to improve traceability. Consequently the smooth
trace becomes possible by removing the high-frequency range from the input signal.
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Fig. 5.11 IKF filter structure

5.4.3.3 Causal/Non-causal FIR

The controllers mentioned in the previous sections require an accurate system model
and the transfer function is formulated using a complicated process. However, it is
difficult to apply these controllers to a real CNC system. Therefore, a practical tech-
nique is typically used in industry, where the position command is forwarded to the
feedback controller together with velocity and acceleration/deceleration commands,
as shown in Fig. 5.12.
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Fig. 5.12 Practical feedforward control

This type of controller can be represented mathematically in the two-step causal
filter as Eq. 5.29.
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G(z) = a0z−2 + a1z−1 + a2 (5.29)

where, a0 =
V3

T 2 , a1 =−V2

T
− 2V3

T 2 , a2 = 1 +
V2

T
+

V3

T 2

The above causal FIR filter uses the current position data and the position data
from one and two steps before. It can also be represented in the non-causal FIR filter
form that requests future position data.

G(z) = a0 + a1z+ a2z2 (5.30)

The architecture of the controller can be as shown in Fig. 5.13.

w (k)1 Ky Kp
u(k)

process

x (k)
x (k)

1

2

a + a z  +a z0 1 2
2

Fig. 5.13 Non-causal FIR

In a modern CNC system, the above non-causality, asking the future status value
of CNC, can no longer be an obstacle. Since the CNC system typically stores
the future position by NC block interpretation and position interpolation (e.g. lin-
ear/circular interpolation), the future position information at the current position can
be obtained by reading the memory location. The time delay due to the degree of the
filter and position sampling time may occur between the moment that an interpreter
completes interpreting the NC block and the moment that actuation begins. However,
this does not have any effect on the control performance and, actually, this control
type is not worse than the other feedforward controller with respect to the contouring
accuracy and the traceability at corners.

In the previous sections as well as in the current section, the feedforward con-
troller that modifies the input signal and feeds the modified input to the feedback
controller has been described. The following sections describe a controller where the
input signal is fed directly to the feedback controller. A speed feedforward controller
and a torque feedforward controller are typical of this kind of controller. This type
of feedforward controller requires advanced control theories such as speed control
and torque control of the servo system. In this book, only the basic architecture will
be introduced. For other details, please read the reference on design of digital drive
systems.

Figure 5.14 shows the architecture of a speed feedforward controller where the posi-
tion command, αw, is filtered and the filtered command is input directly to the speed
control loop in a drive system in order to improve the response of the position control
loop. Kv in Fig. 5.14 denotes the proportional gain of the position controller and only

5.4.3.4 Speed Feedforward Controller
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proportional control is used for the position control of a CNC system. Kpn and Kin

in Fig. 5.14 denote a propositional gain and an integral gain of the speed controller,
respectively, and it is typical that a PI control is used for the speed control of a CNC
system. αw and α denote the desired position and the actual position respectively,
and T is the sampling time of the position control loop.

Hα

System 
to be controlled

Hn

Kv

Position
Controller

Kin
z

z   1
___

Kpn
T

Simple
&

Holder

Speed Control Loop

Position Control Loop

Speed Control 

Feedforward
Controller

α

αw

Fig. 5.14 Architecture of speed feedforward controller

Figure 5.15 shows the architecture of a torque feedforward controller. In the torque
feedforward controller, a position command is directly input to the current loop (e.g.
system to be controlled) that shows the fastest system response. Therefore, in the
torque feedforward controller, the speed control loop including a current loop inside

ward controller generates the position command that is directly input to the current
loop, the speed command from an interpolator is used as an input to the feedforward
controller for stable control. Because the torque feedforward controller actuates the
motors by using the current loop with the fastest response, it generates the minimum
following error under serial control architecture.

By using the feedforward controller for machine tools, the following error of the
position control loop drastically decreases. The following error will be described in
detail in the next section.

5.4.3.5 Torque Feedforward Controller

and position control loop should fulfill the input balance. Since the torque feedfor-
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Fig. 5.15 Architecture of a torque feedforward controller

5.5 Analysis of the Following Error

The following error is defined as the difference between the desired position and
the actual position of the CNC system. Since the position controller is typically a
proportional controller, large proportional gain has an influence on the short setting
time of machine tools. However, it has a limitation due to the steady-state error and
overshoot.

5.5.1 The Following Error of the Feedback Controller

In a typical position control loop, a Unit Feedback System can be represented as in
the block diagram shown in Fig. 5.16.

The transfer function of an open loop, G(s), is generally represented as follows.

G(s) =
K
sl
· (1 + sT ′1)(1 + sT ′2) . . . (1 + sT ′m)
(1 + sT1)(1 + sT2) . . . (1 + sTn)

(5.31)

where, l + n≥ m and K denotes the gain of the controller.

In this case, the position error is defined as the difference between the desired
position and the output position.

E(s) = U(s)−Y(s) (5.32)
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Fig. 5.16 Unit feedback controller

The transfer function of a closed loop, W (s), can be written as follows,

W (s) =
Y (s)
U(s)

=
G(s)

1 + G(s)
(5.33)

From Eq. 5.32 and Eq. 5.33, E(s) is summarized as follows,

E(s)+
1

1 + G(s)
U(s) (5.34)

where the steady state error is denoted by e(∞), being e(t) as t → ∞, and it can be
calculated by using the Final Value Theorem for Laplace transformations,

e(∞) = lim
t→∞

e(t) = lim
s→0

sE(s) (5.35)

If we consider the steady-state error e(∞) when the input is a step input.
The steady state error ep for the step input u(t) = A or U(s) = A

s is summarized
as follows by using Eqs. 5.31, 5.34, and 5.35.

ep = lim
s→0

sE(s)

= lim
s→0

s · 1

1 + K
sl · (1+sT ′1)(1+sT ′2)...(1+sT ′m)

(1+sT1)(1+sT2)...(1+sTn)

· A
s

= lim
s→0

s · 1

1 + K
sl

· A
s

= lim
s→0

A

1 + K
sl

(5.36)

Consequently, the steady state error is obtained from Eq. 5.36 as follows,

if l = 0 then ep = A
1+K

if l ≥ 1, then ep = 0
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wherein, l = 1 means that G(s) or the controlled system includes the integral element
1
s . If the number of the integral elements is more than one, ep is equal to zero then
the steady-state error does not occur.

Now find the normal error, e(∞), if the input is a Ramp input.
In the case of u(t) = At or U(s) = A

s2 , the steady-state error ep can be expressed
as follows,

= lim
s→0

s · 1

1 + K
sl · (1+sT ′1)(1+sT ′2)...(1+sT ′m)

(1+sT1)(1+sT2)...(1+sTn)

· A
s2

= lim
s→0

s · 1

1 + K
sl

· A
s2

= lim
s→0

A

1 + K
sl−1

(5.37)

Finally,

if l = 0 then ep = ∞.
if l = 1 then ep = A

K .
if l ≥ 2 then ep = 0.

By utilizing the same method, if the steady state error ep due to the acceleration
input u(t) = A

2 t2 is considered the result is expressed as:

If l = 0,1, then ep = ∞.
If l = 2, then ep = A

K .
If l ≥ 3, then ep = 0.

In this moment, the steady state errors of the feedback controller with respect to
the inputs can be summarized as Table 5.2.

Consequently, if we assume that the input command is a function of time, u(t) =
Vt× t (where, Vt is the commanded feedrate in the CNC system), the following error
is typically as in Eq. 5.38.

e f bc =
Vt

Kv
(5.38)

Therefore, we conclude that the following error is inversely proportional to the
gain of the position controller and is proportional to the feedrate when only feedback
control is used. In consequence, it is necessary to increase the gain of the position
controller or decrease the feedrate in order to decrease the following error.
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Table 5.2 Normal error summary

Input u(t)
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2
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A_____
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b___
K
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5.5.2 The Following Error of the Feedforward Controller

If we summarize the following error of the speed feedforward without the compli-
cated derivation process, it can be expressed in short form as Eq. 5.39.

ev
f f c = VtTen (5.39)

The following error of the torque feedforward controller can written as Eq. 5.40.

et
f f c = Vt(Tei + T/2) (5.40)

where Vt , Ten, Tei, and T stand for the feedrate, the time constant of the speed control
loop, the time constant of the current loop, and the sampling time, respectively.

Without the feedforward control we already know that the following error in-
creases in proportion to the feedrate and is inversely proportional to the gain of the
position controller, Kv. Now, when the speed feedforward control is applied, the fol-
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lowing error is in proportion to the feedrate Vt and the time constant of the speed
control loop, Ten. This means that Kv, the gain of the position controller does not
have any effect on the following error and plays the role of regulator against external
disturbance when the speed feedforward controller is used. In the case of the torque
feedforward controller, the following error of the system is in proportion to the fee-
drate, time constant of the current loop and the sampling time of the position control
loop.

5.5.3 Comparison of Following Errors

In the previous section, the main factors of the following errors of the feedback
controller, the speed feedforward controller, and the torque feedforward controller
were discussed. These main factors will be simulated by using actual machine tools,
and the result of the simulation will be addressed in this section.

Figure 5.17a shows the commanded position data (the desired position) and actual
position data after simulating without the feedforward controller. As shown in the
figure, the actual position data follows the desired position with a time delay and the
difference between them is called the following error. Figure 5.17b shows only the
amount of the following error and we can investigate whether the following error
converges to the value derived from Eq. 5.38. This following error is multiplied by
Kv, the gain of the position controller, and the multiplied value is fed to the speed
control loop.
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Fig. 5.17 Comparison of following errors

In the case of the speed feedforward controller, it is assumed that the gain of the
position controller and feedrate are equal to the previous simulation, and the time
constant of the speed control loop, Ten, is assumed to be 4 ms for the simulation.

When the speed feedforward controller is used, the divergence of the following
error can be calculated from Eq. 5.39 as follows,

ev
f f c = VtTen = 0.6667[mm]
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Figure 5.18a shows the following errors when the speed feedforward controller is
used and when the speed feedforward controller is not used. As shown in the figure,
the following error decreases appreciably when the speed feedforward controller is
used. We can also verify that the following error converges to the above calculated
value when speed feedforward control is applied.

In the torque feedforward controller, the command data for actuating the axis is
directly input to the current control loop. Because the current control loop has the
fastest response, theoretically this architecture makes it possible to build a system
with the smallest following error. When the torque feedforward controller is used,
the convergence of the following error can be calculated from Eq. 5.40.

et
f f c = Vt(Tei + T/2) = 0.771[mm]

Figure 5.18b shows the following errors when the speed feedforward controller is
used and when the torque feedforward controller is used. For the simulation, the time
constant of the speed control loop for the speed feedforward controller is specified
as 4 ms and the time constant of the speed control loop for the torque feedforward
controller is specified as 0.4 ms. As shown in the figure, it is possible to decrease the
following error by using the torque feedforward controller.
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Fig. 5.18 Following errors when using speed feedforward

The following error of the position control system is not a critical problem in the
case of a one-axis system. However, in the case of multi-axis systems, the follow-
ing error is reflected in the accuracy of the machined shape. Therefore, it is very
important to decrease the following error for machine accuracy.

As a summary, for the control of a CNC system, the PID controller is a typical
feedback controller for decreasing the position error of each axis. The feedforward
controller is used for decreasing the following error of the PID controller alone.
The feedback controller and the feedforward controller are mutually combined to
decrease the position error of each axis for multi-axis systems.
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5.6 Summary

The quality of devices such as machine tools, robots, chip mounters, and semi-
conductor handlers depends highly on the performance of servo control. The position
control, which actuates the moving unit (e.g., slide, table, and servo) using the posi-
tion data from the interpolator, is the last of the NCK tasks of a CNC system. The
position controller not only controls accurately the position of the axes but also has
to be robust against various disturbances. Motion control can be classified into three
types with respect to the control purpose; the first is point-to-point control where
fast and accurate arrival at the desired position is important regardless of the inter-
mediate path. The second is following control where it is important for all axes to
accurately follow the desired path. The third is contouring control where it is impor-
tant to decrease the contouring error in the case of multi-axis systems. In the position
controller, various algorithms have been used in order to meet the above conditions
and the PID controller, feedforward controller, and cross-coupled controller are typ-
ical.

The PID controller is able to decrease the position error of an axis compared with
a P controller. The feedforward controller is able to decrease the following error by
decreasing the position error of each axis and consequently decreases the contouring
error. The cross-coupled controller decreases the error by generating commands that
can decrease the contouring error by using the contouring error model.



Chapter 6
Numerical Control Kernel

In this chapter, an NCK system is built by integrating the modules that were ad-
dressed in the previous chapters. Two kinds of NCK enabling the execution of
Acceleration/Deceleration-After-Interpolation (ADCAI) and Acceleration/ Deceler-
ation-Before-Interpolation (ADCBI) will be designed. The reader will acquire prac-
tical knowledge related to the implementation of the servo control system through
investigation of the source code.

6.1 Introduction

The NCK (Numerical Control Kernel) is one of the units of which the CNC system
is composed, the NCK is the unit for controlling the servo. The NCK, which con-
sists of an interpreter, interpolator, acc/dec controller, and position controller, is the
key unit not only of the CNC system for machine tools but is also a typical posi-
tion controller where it is necessary to control servos. From Chapter 2 to Chapter 5,
the detailed of the NCK components has been mentioned from the functional and
structural viewpoints.

We will implement the NCK based on typical algorithms from among the various
algorithms mentioned in the previous chapters. We will also mention execution algo-
rithms and implementation by pseudo-code. In this chapter, only the design of NCK
will be described and the overall design of the CNC system where the PLC and MMI
units are included will be addressed in the following chapters in more detail.

6.2 Architecture of ACDAI-type NCK

ACDAI-type NCK consists of an Interpreter, Rough Interpolator, Acc/Dec Con-
troller, Fine Interpolator, Position Controller, and ring buffers as shown in Fig. 6.1.
The details of each of these modules has been mentioned in previous chapters.

187
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Fig. 6.2 shows the data flow between the modules in ACDAI-type NCK. The data
is transmitted between the modules via the ring buffer defined by global variables,
and the ring buffers are located between Interpreter and Rough Interpolator, between
Rough Interpolator and Acc/Dec Controller, and between Acc/Dec Controller and
Fine Interpolator. Each ring buffer includes the data shown in Fig. 6.2. The Fine In-
terpolator and Position Controller use global variables to send the necessary data.

Details about implementation of the modules follows.

Non-cyclic task IPR (Interpreter)

NCK memory
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Fig. 6.1 Modules of the ACDAI-type NCK

6.2.1 Implementation of the Interpolator

As mentioned in Chapter 2, the input of the NCK is the part program. G-code, which
is currently used for defining the part program, supports various functions such as
tool compensation, coordinate transformation, cycle code, user-defined G-code, and
sub program calls for convenience of editing part programs. To execute these func-
tions and calculate the actual toolpath accurately, complicated computational tasks
such as offsetting and coordinate transformations are required. The Interpreter has
the task of computing the actual toolpath from the part program specified by G-codes
or Macros.

6.2.1.1 The Structure of the Interpreter

Figure 6.3 shows the structure of an implemented interpreter. The Interpreter con-
sists of a Compiler, G/M-code Interpreter, and Machine DB. The Compiler extracts
the meaningful data from the part program based on the grammar of G/M-codes and
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Fig. 6.2 Data flow between modules in the ACDAI-type NCK

calls the G/M-code Interpreter related to the extracted information. The G/M-code
Interpreter called by the Compiler calculates the toolpath or transforms the coordi-
nates according to the definition of the G-code and sends the computed result to the
Compiler. The Machine DB stores the necessary data for compilation.

Memory_type

Memory_type
Machine DB

Ring buffer

Part program

Compiler G/M code interpreter

Fig. 6.3 Implemented interpreter structure
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Figure 6.4 shows the execution procedure. The Interpreter carries out initializa-
tion, parsing the program blocks, G/M-code execution, and storing the interpretation
result sequentially.

Yes

No

G-code
interpreter 

Start

InitializationMachine
DB

Reading a
block

Part
program

Identifying the G-code and M-code in the block

G-code interpreter is called

M-code interpreter is called

The interpreted data are
stored in the ring buffer

End

The previous
block data

Parsing
(The block is divided into words, addresses)

Part program end?

Fig. 6.4 Execution procedure for NCK

For the interpreter to execute correctly, tool offset data, workpiece coordinate data
(G54, G55, G56, G57, G58, G59), and the programs connected with user-defined G-
codes are essential and they are stored in the machine DB. During initialization, the
interpreter sets the internal variables based on the information in the machine DB
and receives the part program as input. Afterwards, to prepare the compilation, the
interpreter replaces the blocks that call the sub program and user-defined G-code
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with pre-defined programs. In addition, if there is an iteration loop, the interpreter
repeatedly writes the loop blocks as many times as the specified value. Through
these tasks, the part program is converted into a program where the program blocks
are sequentially executed from beginning to end. The compiler parses the blocks
sequentially based on the converted program. As the last task of initialization, the
Interpreter checks the grammatical errors of the converted part program and decides
whether the compiled program should be executed.

After initialization is complete, the compiler parses each block from the first block
to the last sequentially. During parsing, the block is divided into words, addresses
(see Table 2.1) and numerical data are extracted from the words and the extracted
data are stored.

The following class “memory type” is the implemented data structure to save
the parsed data. The class saves not only the data that is needed to calculate the
actual toolpath, such as G-code type, interpolation type, selected machining plane,
tool-offset direction, tool-radius, coordinate system, rotation angle for rotational co-
ordinate system, and tool-offset amount but also the spindle speed and feedrate that
are applied while the block is being executed.

class memory type {
public :
short code type; // Interpolation(0),

// Program num(1),
// Subroutine call(2)
// Custom macro(3),
// Program end(4)

short int type; // Interpolation type
// (01,02,03)

short plane; // XY(17), ZX(18),YZ(19)
short work cood; // work coordinate index

// (54,55,56,57,58,59)
short num of mid; // number of mid point when

// offset is used
short offset end type; // Normal(0), Extended(1),

// Shrink(2)
short offset dir // radius offset direction

// Left(0), Right(1)
BOOL rad offset; // Offset applied(1), not (0)
BOOL tool moved // G00, G01, G01: 1,

// Others: 0
POINT3D pre; // real coordinate
POINT3D cen;
POINT3D mid[MAX MID POINT];
POINT3D prev; // previous X,Y,Z code val.
POINT3D curr; // current X,Y,Z code val.
POINT3D prev p; // previous I,J,K code val.
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POINT3D curr p; // current I,J,K code val.
double radius; // radius after radius offset;
double original radius; // original radius
double offset radius; // offset radius
int feedrate;
int spindle ; // spindle speed
int tool no; // Tool number used for

// executing block
int m code;
int g gode[MAX GROUP+1] // Modal information
int group flag[MAX GROUP FLAG];
int program no; // program number
int circular mode; // in G02,G03 command

// xyij(0) mode, xyR(1) mode
POINT3D pair; // coordinate in G68
double angle; // rotation angle in G68
char content[80];
int IsSubRoutine;

}

The block data that is saved in class memory type is sent to the G/M-code in-
terpreter and the G/M-code interpreter transforms the coordinate system (G15, G16,
G54, G55, G56, G57, G58, G59,G68, G69, G92) and calculates the toolpath in the
workpiece coordinate system (G00, G01, G02, G03, G40, G41, G42, G43, G44,
G49) considering the previous block and the successor block data. Therefore, the
G/M-code interpreter has computational functionality such as rotation, scaling or
translation of the coordinate system and offsetting for tool radius compensation.

After transformation of the coordinate system and computation of the toolpath
have been completed, the M-code interpreter is called. In general, M-codes are aux-
iliary functions for controlling machines and are used for commanding PLC-related
tasks as mentioned in Table 2.1. So, the M-code interpreter has the task of filling out
the tool number, rotation direction of the spindle, and spindle speed in class mem-
ory type.

After interpretation of a particular block is finished, using the procedure men-
tioned above, the interpreted data, such as tool start position, tool end position, center
position for circular interpolation, and compensation type are stored in the ring buffer
and the stored data are used by the Rough Interpolator or Look-Ahead algorithm.

6.2.1.2 Interpreter Input and Output

In this section, the input and output data are addressed and the implemented data
structure to store the output of the interpreter is as follows:
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Input to interpreter
A part program is input to the Interpreter and the composition of the part program
was mentioned in Section 2.2 in more detail.

Output from the interpreter
The interpreter finally generates and saves the actual start and end positions of the
tool for each block in the workpiece coordinate system. If the block specifies an
arc movement, the interpreter generates and saves the center position and radius of
the arc. The interpolation type and control mode that are required for execution of
the Interpolator and Acc/Dec Controller are stored. The output of the Interpolator
is used as input to the Rough Interpolator in the case of ADCAI-type NCK and as
input to the Look-Ahead algorithm. The following is an implementation example of
the output of the Interpreter.

class CRingIR : public CObject { public :
int nGCode; // G-code type (0: G00, 1: G01, 2: G02)
CVector Start; // Start position of block (mm)
CVector End; // End position of block (mm)
CVector Cen; // Center point of arc (mm)
double dRadius; // Radius of arc (mm)
double dFeed; // Feedrate (mm/min)
int nStatus; // Block status (0: start, 1: end)
int nStopMode; // Path control mode. (1: Exact Stop,

// 0: otherwise)
int nBlockNumber; // Block number.

};

6.2.2 Implementation of the Rough Interpolator

The Rough Interpolator carries out linear interpolation and circular interpolation de-
pending on the G-code type from the interpolator. In Chapter 3, the algorithms for
linear interpolation and circular interpolation were described in detail and we imple-
mented the circular interpolator based on the Improved Tustin algorithm, which is
better than other algorithms in terms of speed and accuracy.

6.2.2.1 Linear Interpolator

The linear interpolator interpolates tool movement specified by G00 and G01. The
same algorithm is applied to G00 and G01 except that G00 uses the feedrate specified
in a CNC system and G01 uses the programmed feedrate. The key function of the
linear interpolator is calculating the displacement of the tool within the iteration time
of interpolation and is executed as follows:
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At first, the feedrate is selected depending on the G-code type and the length of
the tool movement and the displacement of each axis is computed based on the start
and end points of the block. Based on the selected feedrate, the actual time spent to
move the axes is calculated. Based on the axis displacement and the movement time,
the displacement of all axes is computed every iteration time of the interpolation.
Therefore, the movement time must be a multiple of the iteration time of interpola-
tion and the displacement of each axis must be represented by pulse units (one pulse
means 1 BLU). Figure 6.5 shows the procedure for executing linear interpolation for
the X-axis and the same procedure is applied for the other axes.

Start
(Input: CRingIR)

G-code type

Feed F = System feed

dX: Moving distance of X-axis
dY: Moving distance of Y-axis
dZ: Moving distance of Z-axis
T: Time for feeding the block
Tipo: Interpolation period
N: The number of interpolation period 
      for feeding the block
int[X]: Integer of X

PulseX: Moving distance of X-axis
              during interpolation time

Feed F = Commanded feed

Calculate moving distance of block
(L: Moving distance of block)

End

Calculate moving distance of each axis
(dX, dY, dZ)

Calculate the time for feeding the block
T = L/(F/60)

N = int[T/Tipo]

Calculate the distance to go of each axis
during interpolation time
PulseX = [dX/BLU/N]

Calculate the residual distance

G00 G01

Fig. 6.5 Procedure for executing linear interpolation for X-axis

For practical implementation of the interpolator, however, there is something to
be considered besides the above-mentioned procedure. In general, the moving length
of an axis is not an exact multiple of pulses. In this case, numerical error can be
accumulated because of the significant figures of numerical computation on a com-
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puter and this accumulated numerical error causes reduction of the accuracy of the
interpolator.

Therefore, it is essential to prevent numerical error from accumulating for actual
implementation of an interpolator. For this, the length that each axis has to move
within the interpolation time is necessarily a multiple of pulses. However, residual
pulses still remain after assigning pulses evenly for each interpolation time. For ex-
ample, if an axis should be moved with 745 pulses during 10 interpolation time
periods, the axis has to move 74 pulses every iteration time of interpolation and 5
pulses still remain.

There are various methods to handle the remaining pulses. In this chapter, two
practical methods will be introduced.

The first method is to move the axis with the remaining pulses during an additional
iteration interpolation time. For example, if this method is applied to the above ex-
ample, 745 pulses are distributed in 11 iteration interpolation times. The remaining 5
pulses are added to the last (eleventh) iteration after ten iteration interpolation times,
each of 74 pulses. In this method, the difference of the number of pulses between the
eleventh iteration time of interpolation and other iteration interpolation times can be
large and, consequently, results in a drastic feedrate change.

The second method is to allocate the remaining pulses to each iteration inter-
polation time. If the second method is applied to the first method’s example, the
five remaining pulses are equally distributed to the first five iteration interpolation
times. This means that the axis is moved with 75 pulses every iteration interpola-
tion time from the first to the fifth. From the fifth to the tenth, the axis is moved
with 74 pulses every iteration interpolation time. Because one pulse is practically a
very small length, the change of feedrate is slight between the iteration interpolation
times. Therefore, we used the second method for implementation.

There is no one correct method to handle the remaining pulses and the developer
has to decide on an adequate method depending on the application environment.

6.2.2.2 Circular Interpolator

A circular interpolator approximates an arc by a set of line segments within the spec-
ified chordal error. As mentioned in Chapter 3, the greater the number of line seg-
ments, the better the accuracy of the interpolation. However, the time spent interpo-
lating increases as the number of line segment increases. Actually, the performance
of a circular interpolator depends on the minimization of the number of approximat-
ing line segments while fulfilling the chordal error criterion. The Improved Tustin
algorithm, which was introduced in Section 3.3.2.8, satisfies the above condition
and, therefore, the Improved Tustin algorithm was used to implement the circular
interpolator.

Figure 6.6 shows the flowchart of the implemented circular interpolator. The im-
plemented circular interpolator was divided into two parts. In the first part an arc is
approximated into the line segments and, in the second part, the divided line segment
is itself subdivided into the micro line segments to go along during each interpola-
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tion period. The details of each part are as follows. In the first part, α the length of
the approximating line segment and δ , the angle between the start point and the end
point of arc, are computed by the Improved Tustin algorithm. Strictly speaking, α is
the angle between the start point and the end point of the approximated line segment,
as shown in Fig. 3.24.

Furthermore, the number of line segments is calculated by dividing δ from the
Improved Tustin algorithm by α , where δ may not be an exact multiple of α . In
this case, modification of α is needed in order for δ to be a multiple of α . This task
is necessary to make the length of the line segments equal and, in consequence, to
make a uniform feed. To perform this task, we implemented the following method.

Because α is proportional to the chordal error, α has to be decreased so that the
distance between any point on the line segment and the circle does not exceed the
specified chordal error. Consequently, the best way is to decrease the number of line
segments by one and to compute a new α by dividing δ by the decreased number of
line segments. Finally, with the newly computed α , the start point of the arc and the
center point of the arc, it is possible to obtain the final start and end points of the line
segments.

In the second part, the line segments from the first part are divided into small line
segments based on the feed and the iteration time of interpolation. Dividing the prin-
ciple line segments into small line segments is done in the same way as interpolating
the linear profile (line block) in the linear interpolator. The line segments into which
an arc is approximated are equal to the linear profile (line block) and the small line
segments determine the displacement of the axis movement within each interpolation
iteration time.

6.2.2.3 Input and Output of the Interpolator

In this section, the implemented data structure to store the input and output of Rough
Interpolator is addressed.

Rough Input
As input to the Rough Interpolator, the G-Code type, the start point and end point
of block, feedrate, path control mode (e.g, Exact Stop Mode and Continuous Mode),
and the center point and radius of an arc have been implemented. The following is
an implementation example of the input to the Rough Interpolator.
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Start
(Input: CRingIR)

I ≤ N

Calculate δ, angle between start and
end position of arc

End

Calculate the number of linear segments
N = int[δ/α] + 1

Calculate α of linear segment

Yes

No

Update α
α = δ/N

I = 0

Calculate the start and end position
of linear segment

Linear interpolation for
linear segment

I = I + 1

Fig. 6.6 Flowchart of the implemented circular interpolator

class CRingIR : public CObject { public :
int nGCode; // G-code type (0: G00, 1: G01, 2: G02)
CVector Start; // Start position of block (mm)
CVector End; // End position of block (mm)
CVector Cen; // Center point of arc (mm)
double dRadius; // Radius of arc (mm)
double dFeed; // Feedrate (mm/min)
int nStatus; // Block status (0: start, 1: end)
int nStopMode; // Path control mode. (1: Exact Stop,

// 0: otherwise)
int nBlockNumber; // Block number.

};



198 6 Numerical Control Kernel

Rough Output
The output from the interpolator consists of the displacement of each axis within the
interpolation iteration time (in pulse units) and the number of interpolation sampling
times that are required to carry out the block. In addition, the feedrate that is applied
for Acc/Dec control and the path control mode are stored as the output. The following
is the implemented data structure to store the output from the Rough Interpolator.

class CRingRA : public CObject { public :
double dFeed; // Feedrate (mm/min)
int nStopMode; // Path control mode (1: exact stop,

// 0: otherwise)
CVector* P; // Distance to move per interpolation

// cycle in terms of number of pulses.
int nStatus; // Block status (0: start, 1: end)
int N; // Number of repetitions for interpolation

// in executing block.
};

6.2.2.4 Functions for the Rough Interpolator

ARoughInterpolation()
This is the main function of the Rough Interpolator. The behavior of this function
follows the flowchart shown in Fig. 6.7. This function gets the block data from the
ring buffer that saves the result from the Interpreter. It also carries out linear interpo-
lation and circular interpolation depending on the G-code type specified in the block.

G-code type

Get CRingIR
from ring buffer

End

Call
LinearInterpolation()

G00/G01 G02/G03

Call
CWCCWInterpolation()

Start

Fig. 6.7 Rough interpolation
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LinearInterpolation()
This function executes the linear interpolation and realizes the flowchart shown in
Fig. 6.4. Based on the input mentioned in Section 6.2.2.3, this function computes
the displacement of each axis every interpolation iteration time (series of pulses) and
stores the result in the ring buffer.

CWCCWInterpolation()
This function executes circular interpolation and realizes the flowchart shown in
Fig. 6.6. Based on the input mentioned in Section 6.2.2.3, this function computes
the displacement (pulses) of each axis every interpolation iteration time and stores
the result in the ring buffer.

6.2.3 Implementation of an Acc/Dec Controller

If the acceleration performance of a servo motor is not enough when an axis just
starts or when the difference of the velocity between two successive blocks is large,
it is difficult to reach the programmed feedrate within the interpolation iteration time
when the feedrate is changed and, therefore, it is impossible for an axis to move with
the programmed displacement.

Actually, the interpolator does not consider the acceleration performance of the
servo motor when calculating the displacement of each axis every interpolation iter-
ation time (meaning the pulse profile), only the geometry of a block is considered.

The Acc/Dec Controller smoothes the change of velocity, meaning the number
of pulses, at the beginning and the end of a block. The details of acceleration and
deceleration algorithms were addressed in Chapter 4. Linear Acc/Dec, Exponential
Acc/Dec, and S-Shape Acc/Dec algorithms, mentioned in Section 4.2.1, were imple-
mented by transforming Eq.s 4.7, 4.8, and 4.9 into software functions.

Moreover, the CNC system provides Exact Stop Mode and Continuous Mode as
path control modes. The algorithms for the two path control modes were described
in Section 4.2.4. Exact Stop Mode was implemented by applying Acc/Dec control to
individual blocks and executing the next block after completion of execution of the
current block motion. As mentioned in Section 4.2.4, Continuous Mode implements
Acc/Dec control continuously to each of the following blocks. The concept of Exact
Stop Mode and Continuous Mode are shown in Fig. 6.8.

6.2.3.1 Input and Output of the Acc/Dec Controller

Input
The Acc/Dec Controller receives the output from the interpolator as input via the
ring buffer. The displacement of each axis every interpolation iteration time (pulse
profile), an iteration number of interpolation steps for the block, the feedrate, and the
path control mode are input to the Acc/Dec Controller.
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If Block_mode == Exact_STOP
Yes No

After completion of the first block,
compute immediately Acc/Dec for next block

Compute Acc/Dec until end of block
and then compute Acc/Dec for next block

Fig. 6.8 Exact Stop Mode and Continuous Mode

class CRingRA : public CObject { public :
double dFeed; // Feedrate (mm/min)
int nStopMode; // Path control mode (1: exact stop,

// 0: otherwise)
CVector* P; // Distance to move per interpolation

// cycle in terms of number of pulses.
int N; // Number of repetitions for interpolation

// in executing block.
};

Output
The Acc/Dec Controller outputs the displacement of each axis every interpolation
iteration time (pulse profile) and the interpolation iteration time for each block.

class CRingAF : public CObject { public:
CVector* P; // Distance to move per interpolation

// cycle in terms of number of pulses.
int N; // Number of repetitions for interpolation

// in executing block.
}

6.2.3.2 Functions for Acc/Dec Controller ACC DEC()

This is the main function of the Acc/Dec Controller and calls particular functions
depending the pre-specified algorithms to generate the Acc/Dec profile. Figure 6.9
shows the flowchart of this function.
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Fig. 6.9 Flowchart for generating pre-specified functions

ACCDEC Linear()
This is the implementation of the Linear-type Acc/Dec Control algorithm. This func-
tion calls lcal() to generate the Acc/Dec pulse profile for each block and generates
the final pulse profile by using the following two functions depending on the pre-
specified path control mode.

ACCDEC Linear ES()
This function carries out Linear-type Acc/Dec control in Exact Stop mode. The im-
plementation method of Exact Stop mode was described in detail in Section 4.2.4.

ACCDEC Linear BO()
This function carries out Linear-type Acc/Dec control in Continuous mode. In detail,
the implementation method of Continuous mode was mentioned in Section 4.2.4.

ACCDEC Scurve()
This is the implementation of the S-Shape Type Acc/Dec Control algorithm. This
function calls scal() to generate an Acc/Dec pulse profile of each block and generates
the final pulse profile by using the following two functions depending on the pre-
specified path control mode.

ACCDEC Scurve ES()
This function carries out S-Shape-type Acc/Dec control in Exact Stop mode. The im-
plementation method of the Exact Stop mode was described in detail in Section 4.2.4.
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ACCDEC Scurve BO()
This function carries out S-Shape-type Acc/Dec control in Continuous mode. The
implementation method of Continuous mode was described in detail in Section 4.2.4.

ACCDEC Expo()
This is the implementation of the Exponential-type Acc/Dec Control algorithm. This
function calls ecal() to generate the Acc/Dec pulse profile of each block and gen-
erates the final pulse profile by using the following two functions depending on the
pre-specified path control mode.

ACCDEC Expo ES()
This function carries out Exponential-type Acc/Dec control in Exact Stop mode. The
implementation method of Exact Stop mode was described in detail in Section 4.2.4

ACCDEC Expo BO()
This function carries out Exponential Type Acc/Dec control in Continuous mode.
The implementation method of Continuous mode was described in detail in Sec-
tion 4.2.4.

lcal()
This function generates the pulse profile of a block by applying Linear-type Acc/Dec
control algorithm. This function is the realization of Eq. 4.7 in Section 4.2.1.

ecal()
This function generates the pulse profile of a block by applying the Exponential-
type Acc/Dec control algorithm. This function is the realization of Eq. 4.8 in Sec-
tion 4.2.1.

scal()
This function generates the pulse profile of a block by applying the S-Shape-type
Acc/Dec control algorithm. This function is the realization of Eq. 4.9 in Sec-
tion 4.2.1.

6.2.3.3 Implementation of the Acc/Dec Controller

To verify the implemented Acc/Dec Controller, we applied the part program in
Fig. 6.10 to the implemented Acc/Dec Controller. Figure 6.10 shows the acceleration
and deceleration results for the X-axis during continuous cutting mode and Fig. 6.11
shows the results for the X-axis during Exact Stop mode. According to Fig. 6.10 and
Fig. 6.11, we can see that the drastic change in the number of pulses shown in the
output from the Rough Interpolator is smoothed through the Acc/Dec Controller.

Moreover, we can see the different acceleration and deceleration profiles depend-
ing on the path control mode from Fig. 6.10 and Fig. 6.11. Strictly speaking, in Exact
Stop Mode, the speed at the corner point where two successive blocks meet becomes
0 and in continuous cutting mode the speed at the corner is not reduced to zero. From
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Fig. 6.10 Continuous cutting mode

[Rough interpolation result]

80

60

40

20

0

1

30
1

60
1

90
1

12
01

Time (8ms)

Pu
ls

e

[Acc/Dec result]

80

60

40

20

0

1

30
1

60
1

90
1

12
01

Time (8ms)

Pu
ls

e

Fig. 6.11 Exact Stop mode

the above test, we can verify that the implemented Acc/Dec Controller reflects the
two path control modes well.

6.2.4 Implementation of Fine Interpolator

As mentioned in Section 6.2, due to limitations in control accuracy and hardware
performance, the interpolation iteration time and position control sampling time were
implemented differently. Therefore, the displacement, which axis moves within the
interpolation iteration time, from the Acc/Dec Controller should be divided into the
displacements through which an axis moves within the position control sampling
time.
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Consequently, the Fine Interpolator divides the displacement of an axis within
the interpolation iteration time into the displacement of the axes within the position
control sampling time. In this book, we introduce the moving-average method and
the linear method and source code for the two implemented methods. The details of
the two algorithms have been given in Section 3.4.

6.2.4.1 Input and Output of the Fine Interpolator

Fine Input
The Fine Interpolator receives the output of the Acc/Dec controller as input via the
ring buffer. The input for the Fine Interpolator is the length through which an axis
moves every interpolation iteration time. The implemented data structure of the ring
buffer is as follows.

class CRingAF : public CObject { public:
CVector* P; // Distance to move per interpolation

// cycle in terms of number of pulses)
int N; // Number of repetitions for interpolation

// in executing block.
}

Output
The output of the Fine Interpolator is the length through which each axis moves every
position control sampling time. Instead of a ring buffer, a global variable, shown
below, is used to transmit the data between the Fine Interpolator and the Position
Controller. The transmitted data consists of the displacement and direction of the
axis movement.

CVector P[16]; // Distance to move per interpolation cycle in terms
// of number of pulses.

6.2.4.2 Functions for the Fine Interpolator

FIPO()
This is the main function of the Fine Interpolator and carries out uniform fine inter-
polation by calling FIPO Linear() and moving average fine interpolation by calling
MovingAverage(). The type of fine interpolation should be specified by the user.

FIPO Linear()
This function carries out linear fine interpolation. The linear method means distribut-
ing the displacement of each axis uniformly within the interpolation iteration time
over the iteration times for position control. Figure 6.13 shows the flowchart for lin-
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Fig. 6.12 Fine interpolation flowchart

ear fine interpolation and can be applied identically for other axes. This function is
the realization of the procedure of Fig. 6.13.

FIPO Moving()
This function carries out moving-average fine interpolation. In the moving-average
method, firstly the number of pulses for every iteration time of position control is
calculated by applying the linear fine interpolation to a block. Secondly, the moving
average is applied to the pulse profile. Figure 6.14 shows the flowchart for moving-
average interpolation and can be applied identically to other axes. This function is
the realization of the procedure of Fig. 6.14.

6.2.4.3 Verification of the Fine Interpolator

To verify the implemented Fine Interpolator, we applied the part program in Fig. 6.15
to the implemented Fine Interpolator. The example part program consists of three
linear paths that include a diagonal path, a perpendicular path, and a horizontal path.

Figure 6.16 shows the results of fine interpolation for the above example. The overall
profiles of moving-average fine interpolation and linear fine interpolation appear to
be equal. However, if the box-shaped areas are enlarged, we can see the difference
between the two fine interpolation methods.
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Fig. 6.13 Flowchart for linear fine interpolation

Figure 6.17 shows the enlargement of box A in Fig. 6.16. The implemented inter-
polation iteration time is 8 ms and the iteration time of position control is 1 ms. Fig-
ure 6.17a shows the input (pulse profile) to the Fine Interpolator. The implemented
moving-average fine interpolation method generates the output (pulse profile) shown
in Fig. 6.17b and the implemented linear fine interpolation method generates the
output (pulse profile) shown in Fig. 6.17c.

Figure 6.18 shows the enlargement of box B in Fig. 6.16. Figure 6.18a shows
the input to the Fine Interpolator, which was generated by the Acc/Dec Controller.
Figures 6.18b and 6.18c show the results of the moving-average method and the
linear method, respectively.
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Fig. 6.17 Enlargement of box A from Fig. 6.16
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Fig. 6.18 Enlargement of box B from Fig. 6.16

6.2.5 Implementation of the Position Controller

The Position Controller is the module that compares the actual position of each axis
obtained from an encoder with the commanded position and generates an analog
signal (voltage signal) to be sent to each servo drive based on the comparison result. It
is iteratively executed every interpolation time of position control. In Section 5.4, the
PID control algorithm, the feedforward algorithm, and the cross-coupling algorithm
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were addressed. From these, the PID control algorithm described in Section 5.4.1
was implemented for realizing the Position Controller.

6.2.5.1 Input and Output of the Position Controller

Input
The displacement (pulses) through which an axis should move within the interpola-
tion time of position control is input to the Position Controller. The actual position
data of the axes, another input to the Position Controller, are obtained from an en-
coder.

CVector P; // Distance to move per interpolation
// cycle in terms of number of pulses.

CDirection Dir; // Moving direction of each axis.

Output
The Position Controller outputs the voltage signal that is sent to the servo drive sys-
tem. The voltage signal is converted to a current signal by a servo drive system and,
finally, the rotation speed of the servo motor is decided by the current signal.

6.2.5.2 Functions for the Position Controller

POS()
This is the function that realizes the pseudo-code of the PID Controller described in
Section 5.4.1. In this function, first the actual position data is taken from encoders
and the position error is computed by comparing the actual position from the com-
manded position. The computed position error is used as the input to the PID control
algorithm together with PID gains. The implemented PID algorithm generates the
control signal, meaning the velocity of the axes during the iteration time of the po-
sition control and this control signal is then converted into a voltage signal that is
transmitted to the servo drive.

6.2.5.3 Verification of the Position Controller

To verify the implemented Position Controller, we assume a virtual servo motor and
apply two PID gains for this virtual servo motor. In Test 1, the P gain, I gain, and D
gain were set to 2.0, 0.0001, and 0.0 respectively. In Test 2, the P gain, I gain, and D
gain were set to 1.0, 0.0001, 0.0, respectively. For the simulation, the part program
shown in Fig. 6.19 was used.
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Fig. 6.19 Part program for simulation

The tool trace shown in Fig. 6.19 shows the two simulation results. Because of the
scale of the graph, the difference between the two simulations is not obvious. How-
ever, if we enlarge box A, it is possible to see the difference between the two simu-
lations. Figures 6.20 and 6.21 show the tool traces of Test 1 and Test 2 respectively.
In Test 1, the position error of each axis falls within 0.005 mm and in Test 2, the
position error of each axis falls within 0.03 mm.

According to the two simulations, we can verify that the implemented Position
Controller and the performance of the Position Controller depends on the PID gains.
In practical terms, finding suitable PID gains is very important for implementation
of a Position Controller.
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6.3 Architecture of an ADCBI-type NCK

As shown in Fig. 6.23, an ADCBI-type NCK consists of an Interpreter, a Look-
Ahead module, a Rough Interpolator, a Fine Interpolator, and a Position Controller.
The difference between an ADCAI-type NCK and an ADCBI-type NCK is the ex-
ecution sequence of Acc/Dec control and rough interpolation. In an ADCBI-type
NCK, the velocity profile based on acceleration and deceleration capability and pro-
grammed feedrate is generated and rough interpolation is executed from the velocity
profile. Therefore, the rough interpolation algorithm and the Acc/Dec control algo-
rithm of an ADCBI-type NCK are different from those of an ADCAI-type NCK. The
details of the algorithms were given in Chapter 4.

Most of the algorithms for an ADCBI-type NCK are the same as those for an
ADCAI-type NCK, except for the Look-Ahead module, Acc/Dec Controller, and
Rough Interpolator. Consequently, the modules of an ADCAI-type NCK are identical
to those used for an ADCBI-type NCK.

Figure 6.23 shows the data flow between the modules in an ADCBI-type NCK. In
an ADCBI-type NCK, the ring buffers between the Interpreter and the Look-ahead
module, between the Look-ahead module and the Acc/Dec Controller, between the
Acc/Dec Controller and the Rough Interpolator, between the Rough Interpolator and
the Mapping module, and between the Fine Interpolator and the Position Controller,
are used for synchronization of data flow between the modules.
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6.3.1 Implementation of the Look-Ahead Module

The Look-ahead module calculates the feasible speeds at the beginning and end of
the current block by looking ahead at successive blocks. In Section 4.4, the details
of the Look-ahead function were described and, in particular, the detailed algorithm
was introduced from Fig.s 4.32 and 4.33. To realize the Look-ahead module, we
implemented the procedures shown in Fig. 4.32 and Fig. 4.33.

6.3.1.1 Input and Output of the Look-Ahead Module

Input
The output of the Interpreter is input to the Look-ahead module. The following is
the data structure that is implemented to store the input of the Look-ahead module.
It is used as an element of the ring buffer between the Interpreter and Look-ahead
modules.

class CRingIR : public CObject { public :
int nGCode; // G-code type, (0: G00, 1: G01, 2: G02)
CVector Start; // Start position of a block (mm)
CVector End; // End position of a block (mm)
CVector Cen; // Center point of arc (mm)
double dRadius; // Radius of arc (mm)
double dFeed; // Feedrate (mm/min)
int nStatus; // Block status (0: start, 1: end)
int nStopMode; // Path control mode. (1: Exact Stop,

// 0: otherwise)
int nBlockNumber; // Block number.

};

Output
The Look-ahead module generates the speeds at the beginning and the end of a block
as an output. The following is the data structure used to store the output of the Look-
ahead module and is used as the element of the ring buffer between the Look-ahead
module and the Acc/Dec Controller.



214 6 Numerical Control Kernel

class CRBLookaheadBlock : public CObject { public:
int nGCode; // G-code type (0: G00, 1: G01, 2: G02)
Cvector vPStart; // Start position of a block (mm)
Cvector vPEnd; // End position of a block (mm)
double dVStart; // Speed at the start position (mm/sec)
double dVEnd; // Speed at the end position (mm/sec)
double dVComm; // Speed modified by Look-ahead

// algorithm (mm/sec)
CVector vPCenter; // Center position of arc (mm)
double dRadius; // Radius of arc (mm)

};

6.3.1.2 Functions for the Look-Ahead Module

LookAhead()
This is the main function of the Look-ahead module and the implementation of the
flowchart shown in Fig. 4.32. In this function, based on the look-ahead buffer storing
the information about the following blocks, the allowable speed at the end of a block
is computed and the feasibility of the end speed is verified based on the length of
the block and the start speed. If a longer length is required than the length of the
block for acceleration or deceleration from the speed at the beginning of the block
to the speed at the end of the block, a new end speed is calculated by using Eq. 4.96.
Otherwise, the computed end speed is specified as the end speed of the block.

DetermineIBlockVelocity()
As the function realizes the flowchart shown in Fig. 4.33, it computes the speed at
the beginning of a block considering the end speed of that block. Strictly speaking,
this function is used to compute the speeds at the beginning and the end of the ith
block in LookAhead(). In this function, two kinds of start speed are computed; the
first reflects the length of the block as mentioned in Section 4.4.1.1 and the second
reflects the feasible corner speed as mentioned in Section 4.4.1.2. Finally, comparing
the two kinds of speed and the programmed feedrate, this function selects the smaller
speed as the start speed of the block.

DetermineVelocityBetweenLL()
This function calculates the speed at the corner where two successive linear blocks
meet and realizes the algorithm mentioned in Section 4.4.1.2. In Section 4.4.1.2, two
algorithms for determining the corner speed were introduced; one is based on the
joint maximum allowable acceleration and deceleration and the other is based on the
cartesian maximum allowable acceleration and deceleration. This function realizes
two methods and is used in DetermineIBlockVelocity().

DetermineVelocityBetweenLC()
This function calculates the speed at the corner where a preceding linear block and a
following arc block meet and realizes the algorithm described in Section 4.4.1.2. In
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this function, the angle θ between the two successive blocks, depicted in Fig. 4.28,
means the angle between a linear block and the tangent vector of an arc block at
the corner. This angle θ is input to Eqs. 4.87 and 4.88 to determine the speed at the
corner.

DetermineVelocityBetweenCL()
This function calculates the speed at the corner where a preceding arc block and a
following linear block meet and realizes the algorithm described in Section 4.4.1.2.
The way of determining the angle θ between two successive blocks is the same as
that in DetermineVelocityBetweenLC().

DetermineVelocityBetweenCC()
This function calculates the speed at the corner where a preceding arc block and
a following arc block meet and realizes the algorithm described in Section 4.4.1.2.
How to determine the angle θ between two successive blocks is the same as that in
DetermineVelocityBetweenLC().

6.3.2 Implementation of an Acc/Dec Controller

An Acc/Dec Controller of ADCBI-type NCK generates the speed profile of a block.
As mentioned in Section 4.3.1, a block can be classified as either a normal block or
a small block. Depending on the type of the block, the way of generating the speed
profile is different. In an Acc/Dec Controller, whether a block is a normal block or a
small block and whether a block is a linear block or an arc block is checked first of
all. According to the type of block, a block can be divided into four kinds; a linear
normal block, a linear small block, an arc normal block, and an arc small block. The
Acc/Dec Controller then calls the appropriate sub-function based on the block type.

The implemented Acc/Dec Controller includes a Look-ahead function. Because a
Look-ahead function practically includes speed profile generation of all cases men-
tioned in Section 4.3.2, it is not necessary to implement the algorithms for speed
profile generation of the twelve cases mentioned in Section 4.3.2 and, therefore, the
following four functions for generating speed profile were implemented.

6.3.2.1 Input and Output of the Acc/Dec Controller

Input
The Acc/Dec Controller gets the start position, the end position, the allowable start
speed, and the allowable end speed of a block as input. In addition, if the block is
an arc block, the center position and the radius of an arc are input to the Acc/Dec
Controller. The following is the implemented data structure to store the input of the
Acc/Dec Controller.
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class CRBLookaheadBlock : public CObject { public:
int nGCode; // G-code type (0: G00, 1: G01, 2: G02)
CVector vPStart; // Start position of a block (mm)
CVector vPEnd; // End position of a block (mm)
double dVStart; // Speed at the start position (mm/sec)
double dVEnd; // Speed at the end position (mm/sec)
double dVComm; // Speed modified by Look-ahead

// algorithm (mm/sec)
CVector vPCenter; // Center position of arc (mm)
double dRadius; // Radius of arc (mm)

};

Output
The Acc/Dec Controller generates the speed for every interpolation iteration time
in the case of a linear block and generates the angular speed every interpolation
iteration time in the case of an arc block. In addition, it outputs the G-code type,
the start position, the end position, and the center position of a block for Rough
Interpolation.

class CRBAccDecBlock : public CObject { public:
int nGCode; // G-Code type (0: G00, 1: G01, 2: G02)
CVector vPStart; // Start position of a block (mm)
CVector vPEnd; // End position of a block (mm)
double* dVi; // Speed during iteration time of inter-

// polation in the case of a linear block.
int nBlockN; // Iteration number of interpolation.
double* dAi; // Angular speed during iteration time of

// interpolation in the case of an arc
// block.

double dError; // Remaining distance.
double dRadius; // Radius of an arc (mm).
double dTheta; // Remaining angle of arc.
CVector vPCenter; // Center position of an arc (mm).

};

6.3.2.2 Functions of the Acc/Dec Controller

DetermineVelocityProfile( )
This is the main function of the Acc/Dec Controller. This function determines
whether the input block is a normal block or a small block and calls the appropriate
function depending on the type of the block. Figure 6.24 shows the flowchart of this
function.
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Fig. 6.24 Flowchart of DetermineVelocityProfile function

LineNormalBlock( )
This function generates the speed profile every interpolation iteration time for a lin-
ear normal block. Tacc, Tdec, Tconst in Fig. 6.25 denote the time spent to reach the
commanded speed from the start speed by the maximum allowable acceleration, the
time spent to reach the end speed from the commanded speed by the maximum al-
lowable deceleration, and the time period of constant speed, respectively. a1 and a3

denote the acceleration and the deceleration respectively. In addition, Vstart , Vend , and
Vmax denote the start speed, the end speed, and the commanded speed of a block and
Tipo denotes the interpolation iteration time. Vi is the speed of the ith interpolation
iteration.

In the case of a linear normal block, the speed profile consists of an acceleration
period, a deceleration period, and a constant speed period. To generate the speed pro-
file during the acceleration period, the acceleration value and the acceleration time
need to be determined. Although the maximum allowable acceleration is specified in
the NCK, the new acceleration value, which makes the acceleration time a multiple
of the interpolation iteration time and is the closest to the maximum allowable accel-
eration value, is calculated for the simplicity of the algorithm. If the acceleration time
is not a multiple of the interpolation iteration time, the change of acceleration during
the acceleration period occurs and this makes it difficult to compute the displacement
along the axis during the iteration time of rough interpolation.

In the same way, the deceleration time and the deceleration value are determined.
Like the acceleration value, the deceleration value that makes the deceleration time a
multiple of the interpolation iteration time and is closest to the maximum allowable
deceleration, is determined.

After the acceleration time and the deceleration time have been determined, the
displacement during the constant period can be computed by subtracting the dis-
placement during the acceleration and the deceleration period from the length of the
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block. The constant time should now be a multiple of the interpolation iteration time,
like the acceleration time.

Finally, it is possible to compute the speed at the beginning and end of each itera-
tion time from the above-mentioned values. However, because the acceleration time,
the deceleration time, and the constant time should be multiples of the interpolation
iteration time, a tool may not reach the programmed position. The remaining length
is distributed by a residual pulse-handling algorithm in the Rough Interpolator.
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Fig. 6.25 Flowchart for LineNormalBlock function

LineSmallBlock( )
This function generates the speed profile for a linear normal block. Figure 6.26 shows
the flowchart of this function. In Fig. 6.26, Stot denotes the length of a block and Vmax

denotes the maximum reachable speed in the block. The other notations are the same
as those in Fig. 6.25.
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Fig. 6.26 Flowchart for LineSmallBlock function

In the case of a linear small block, for simplicity of the algorithm it is assumed
that the acceleration and the deceleration are equal. From this assumption, the max-
imum reachable speed is computed based on the maximum allowable acceleration
and deceleration within a block. Here, like the algorithm for a linear normal block,
the acceleration or deceleration time is made a multiple of the interpolation itera-
tion time. Next, by using the computed acceleration time or deceleration time, the
maximum reachable speed within a block is recalculated and the final acceleration
or deceleration is computed.

From the acceleration/deceleration and acceleration/deceleration time, it it possi-
ble to compute the speed at the beginning and end of each iteration time.
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Fig. 6.27 Flowchart for CircleNormalBlock function

CircleNormalBlock( )
This function generates the speed profile for an arc normal block. It is implemented
by the same algorithm as that of LineNormalBlock(). In the case of a linear normal
block, a speed means the feedrate in a cartesian coordinate system and in the case
of an arc normal block, a speed means an angular speed. Figure 6.27 shows the
flowchart for generating the speed profile for an arc normal block and W and AW in
Fig. 6.27 are an angular speed and an angular acceleration, respectively.

CircleSmallBlock( )
This function generates the velocity profile of a small arc block and it is imple-
mented with the same algorithm as that of LineSmallBlock(). Figure 6.28 shows the
flowchart of the Acc/Dec control algorithm for a small arc block. In Fig. 6.28, W and
AW denote an angular speed and an angular acceleration, respectively. θtot denotes
the angle between the start position and the end position of an arc.
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6.3.3 Implementation of the Rough Interpolator

The Rough Interpolator of an ADCBI-type NCK calculates the position at which the
tool should arrive for every interpolation iteration time based on the velocity profile
from the Acc/Dec Controller.

6.3.3.1 Rough Interpolator Input and Output

Input
The output of the Acc/Dec Controller is input to the Rough Interpolator. The follow-
ing is the implemented data structure of the Rough Interpolator. The inputs consist
of the speed within the interpolation iteration time (an angular speed in the case of
an arc), the remaining displacement, etc.

class CRBAccDecBlock : public CObject { public:
int nGCode; // G code type (0: G00, 1: G01, 2: G02)
CVector vPStart; // Start position of a block (mm)
CVector vPEnd; // End position of a block (mm)
double* dVi; // Speed during iteration time of inter-

// polation in the case of a linear block.
int nBlockN; // Iteration number of interpolation.
double* dAi; // Angular speed during interation time

// of interpolation in the case of an
// arc block.

double dError; // Remaining distance.
double dRadius; // Radius of arc (mm).
double dTheta; // Remaining angle of arc.
CVector vPCenter; // Center position of arc (mm).

};

Output
The Rough Interpolator generates and stores the position at which a tool should ar-
rive for every interpolation iteration time. The following is the implemented data
structure for storing the output from the Rough Interpolator.

class CRBRoughIPOBlock : public CObject { public:
CVector* vPi; // Position at which a tool should arrive

// each iteration time of interpolation.
int nBlockN; // Iteration number of interpolation.

};
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6.3.3.2 Functions of the Rough Interpolator

RoughInterpolation()
This is the main function of the Rough Interpolator and calls one of the following
two functions depending on the type of interpolation; linear interpolation or circular
interpolation. The flowchart is shown in Fig. 6.29.
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Fig. 6.29 Flowchart for the RoughInterpolation function

LinearIPO Pre()
This function carries out rough interpolation for a linear block. Figure 6.30 shows the
flow chart for this function. In Fig. 6.30, Pstart and Pend mean the start position and
the end position of a block respectively. Pi denotes the position where the tool should
arrive for the ith iteration time and Srem is the remaining length, being the length
between the programmed position and the position at which the tool should arrive
when the tool moves at the speed specified by the speed profile. N is the number of
iteration times over a block. The other notations are the same as those in Fig. 6.25.

For rough interpolation of a linear block, the displacements through which the
tool should move every interpolation iteration time, based on the speed profile, are
computed. If length remains afterwards, the remaining length is divided by the num-
ber of iteration times and the computed value is added to the displacement for each
interpolation iteration time.

Finally, Rough Interpolator calculates the position at which the tool should arrive
every interpolation iteration time by using the above computation result and the start
position of the block.

CircularIPO Pre()
This function carries out the rough interpolation for an arc block. The procedure and
the algorithm for this function is similar to that of LinearIPO Pre() except in the
meaning of the speed. In the case of an arc block, the speed means an angular speed.
Therefore, by replacing the speed by angular speed in Fig. 6.28, the flowchart for
carrying out circular interpolation can be obtained as shown in Fig. 6.31. In Fig. 6.31,
Xstart and Xcenter mean the start position and the center position of an arc block with
respect to the X-axis coordinate.
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6.3.4 The Mapping Module

The Mapping module divides the tool movement over the interpolation iteration time
into displacements of each axis, being the input to the Fine Interpolator. In the case
of ADCBI-type NCK, because Acc/Dec control and rough interpolation are applied
to the tangential direction of tool movement, unlike ADCAI-type NCK, it is neces-
sary to divide the interpolated point into displacements for each axis. In general, the
Mapping function can be included in the Rough Interpolator. However, in this text-
book, the Mapping function is implemented as a separate module in order to show
the execution procedure of NCK.

6.3.4.1 Input and Output of Mapping Module

Mapping input
The position at which the tool should arrive for every interpolation iteration time is
input to the Mapping module. The following is the implemented data structure to
store the input to the Mapping module.

class CRBRoughIPOBlock : public CObject { public:
CVector* vPi; // Position at which tool should arrive

// each iteration time of interpolation.
int nBlockN; // Iteration number of interpolation.

};

Mapping output
The Mapping module generates and stores the displacement of each axis every in-
terpolation iteration time. The stored output is used as input to the Fine Interpolator.
The following is the implemented data structure to save the output of the Mapping
module.

class CRingAF : public CObject { public:
Cvector* P; // Distance to move per interpolation

cycle in terms of number of pulses.
int N; // Number of repetitions for interpolation

// in executing block.
};
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6.3.4.2 Mapping Functions

Mapping()
This function implements the mapping function, it computes and stores the difference
between the start position and the end position of each axis for every interpolation
iteration time.

6.4 Summary

An ACDAI-type NCK consists of an Interpreter that converts a programmed block
into the actual toolpath, a Rough Interpolator that divides the toolpath into linear
segments, an Acc/Dec Controller that smoothes drastic changes in axis speed, a Fine
Interpolator that divides the linear segments over one interpolation iteration time into
linear segments over iteration times for position control, and a Position Controller
that computes the displacement of each axis based on the position error. These mod-
ules are executed sequentially and the data between the modules is transferred via
ring buffers.

An ADCBI-type NCK consists of an Interpreter, a Look-ahead module, an Acc/
Dec Controller, a Rough Interpolator, a Fine Interpolator, and a Position Controller,
which are executed sequentially. The difference between an ADCBI-type NCK and
an ADCAI-type NCK is the execution sequence of the Acc/Dec Controller and the
Rough Interpolator. In ADCBI-type NCK, the speed profile along the tangential di-
rection of tool movement is generated before rough interpolation. Therefore, the
functions and algorithms for rough interpolation and Acc/Dec control are different
from those of an ADCAI-type NCK. In addition, a Look-ahead function can be used
in ADCBI-type NCK. Besides these algorithms, others are commonly used.
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Chapter 7
Programmable Logic Control

The Programmable Logic Control, PLC, is the automation component for controlling
the execution sequence of machines or production processes. In the CNC system,
the PLC has the task of controlling the mechanical behavior of the machine with
the exception of axis control. In this chapter, the general architecture, function, and
behavior of a PLC will be addressed and the role and characteristics of PLCs in the
CNC system will be described. Also, IEC-1311-3, the international standard PLC
programming language, will be introduced and Soft-PLC will be introduced. Finally,
with respect to the design of a PLC system, the architecture and execution conditions
will be described and an executor of a PLC program will be implemented.

7.1 Introduction

In general, a PLC system contains a logical operator, relay, counter, timer, and arith-
metic calculation functions to control various machines and processes. A PLC sys-
tem can be defined as the controller that consists of a CPU and memories to edit
and execute a PLC program. A PLC system is a software-based control system that
enables easy editing, execution, and modification of a PLC program instead of using
hardware sequence control that controls processes by wiring together the hardware
elements such as relay, timer, and counter. Therefore, a PLC system has the following
advantages compared with a hardware-based sequence control system.

• Flexibility: the modification of control logic is possible by changing a PLC pro-
gram.

• Scalability: the extension of a system is easily possible by adding logic and then
changing PLC programs.

• Economic efficiency: the cost decreases through reduction of design, high relia-
bility, and convenience of maintenance.

• Miniaturization: the physical volume required for installation is small compared
with hardware control systems.

229
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• Reliability: the probability on breaking down due to poor contact decreases be-
cause the system consists of a semiconductor having a non-contact switch.

• Performance: advanced control functions such as data handling and arithmetic
calculation are enabled.

The comparison between hardware-based sequence control and PLC are summa-
rized in Table 7.1.

Table 7.1 Comparison between hardwired sequence controller and PLC

Type Sequence control PLC
Logic Hard Logic Soft Logic
type

Relay (AND, OR, NOT),
Supported Relay, Timer, Up/down Counter,
functions Preset Counter Shift register

Arithmetic calculation,
logic calculation

Control Contact type Non-contact type
type (limited life, slow control) (long life, fast, high

reliability)
How to By changing wiring By changing

change the between hardware PLC program
logic elements

Installation Building, inspection The time for inspection
time and test run take a and test run decreased

long time.
System Stand-alone control It is easy to extend system.
charact- equipment It is possible to connect to
eristics a computer.

Maintain- For maintenance, long Due to high reliability and
ability time is needed. long life, the need for

maintenance is small.
Volume Miniaturization is difficult. Miniaturization is possible.

7.2 PLC Elements

As depicted in Fig. 7.1, the PLC system consists of a Programming Tool, Input Unit,
Output Unit, Program Memory, DATA Memory and CPU Unit. The details of each
unit are described below.

1. Programming Tool – used for editing the PLC program and loading the program
to the CPU unit,

2. Input Unit – receives on/off signals from a variety of switches, sensors, andtimer
and converts the received signals into CPU-interpretable signals,

3. Output Unit – outputs on/off signal to motor, relay, and display,



7.2 PLC Elements 231

4. Program Memory – stores the user program,
5. DATA Memory – stores executable program such as OS, and
6. CPU Unit – interfaces various auxiliary equipment and executes the logic calcu-

lation.

The Input Unit consists of:

1. The input signal terminal that connects the outer elements with the PLC system,
2. The input signal converter that converts the high voltage of external equipment

into a low voltage signal to meet the CPU Unit’s voltage requirements,
3. The display circuit that shows the functional status of the Input Unit, and
4. The interface circuit that transmits the status of the Input Unit to the CPU Unit.

From the hardware point of view, the Input Unit receives various voltage signals
including DC or AC and finally transmits 5V DC to the CPU Unit. The Input Unit
prevents instant noise whose duration is below 5 ms by using a noise filter that in-
cludes a 5 ms delay circuit. In order to protect the CPU Unit from excessive voltage
and current, the Input Unit has a protection circuit, that is a photo-coupler which
converts the electric signal into a photo-signal.
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Fig. 7.1 Elements of the PLC system

The Output Unit converts the calculation result from the PLC to a signal for the
outer actuator and outputs this signal to the outer actuator, e.g. a switch or a relay. It
consists of an interface/multiplex circuit, latch circuit, electrically insulated circuit,
module status display circuit, output signal converter, output signal terminal, and
external output device. The interface circuit is used for transmitting the output of the
CPU and the latch circuit is used for temporary storage of the output from the CPU.
The insulation circuit is used for electrically insulating the signals from external
devices. The module status display circuit is used for displaying the status of the
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Output Unit, and the output signal converter amplifies the output signal of the CPU to
activate the external device. Further, the output signal terminal is used for connecting
the PLC system and external devices. In addition, the Output Unit includes a circuit
to prevent excessive current due to short circuits in the output signal terminal.

The CPU Unit is the core module of the PLC system, executing logic calculation
and arithmetic calculation by interpreting the PLC program and the final results are
sent to the Output Unit. In other words, the CPU Unit handles the serial or parallel
sequence logic operations (e.g. AND, OR, and NOT), timer or counter operations that
are used for controlling the elapsed time based on an internal pulse counter, the four
arithmetical operations, the comparison operation, junction operations (e.g. JUMP
and CALL), mathematical function operations (e.g. COS, SIN, TAN, and Square
root), data transmission, and code conversion.

Program Memory, which stores the user programs, and System Memory, which
stores system data, OS, and application S/W, can be rewritable and can keep the data
using an internal battery even in the case of power failure.

In addition, auxiliary units such as the programming tool and interface units for
RS-232C serial communication and ethernet communication are included in the PLC
system.

Therefore, the maximum input/output contact points, the speed of the CPU Unit
(in FANUC, this is defined as the time consumption per step), the size of the Program
Memory (in FANUC, this is defined as the maximum number of steps.), the kinds
of commands, and the kinds of allowable external communications are specified to
represent the performance of the PLC system.

The method of executing the command specified in a program is as follows.
A PLC programmer creates, edits and saves the PLC program by utilizing a pro-

gramming language such as the ladder diagram, instruction list, etc.
After saving the PLC program, the PLC system scans and executes the steps from

first to last. Accordingly, the PLC system generates the output signal by execution of
the program sequence every specified time period.

As shown in Fig. 7.2, an internal interpreter takes one command from the part pro-
gram in Program Memory and interprets the command. The interpreted command is
executed by calling the appropriate built-in function. In the process of interpretation,
bits of an address in the PLC program are read, and the corresponding address bits
are set to ON or OFF.

The above-mentioned method is an interpretative method whereby the interpre-
tation and execution of steps is repeated one by one while logic control is per-
formed. Because an interpreter-type PLC system reads and interprets the individ-
ual native code of a program sequence and performs the pre-specified macro routine
related with the native code, reduction of execution speed cannot be avoided. Fur-
thermore, because various subroutines for handling internal commands are included
in an interpreter-type PLC system, calling subroutines and returning results occur
frequently during the execution of a sequence program.

In general, the elapsed time for one scan is very important for the performance of
PLC system. Therefore, in order to overcome the slow speed and inefficiency of the
interpretative method, a more efficient and faster method is required.
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Fig. 7.2 Operation of internal interpreter

The compiling method was introduced to overcome the disadvantages of the inter-
pretative method and the behavior of the compiling method is shown in Fig. 7.3. In
the compiling method, a program sequence is interpreted in advance and the internal
commands are replaced with pre-specified routines. Jumps and returns are omitted
during logic control and the execution speed can be increased.

PLC
Program

  Internal
Command
 Converter

  Compiler

Assembler

PLC
Memory

Fig. 7.3 Behavior of compiling method

The workflow of the compiling method can be summarized as follows:

1. The PLC programmer edits a sequence program using a programming tool, which
can exist outside or inside the PLC system.

2. The sequence program is converted to a native program with internal commands
by the Internal Command Converter.
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3. The compiler replaces the internal commands with the appropriate pre-defined
assembly codes.

4. The assembler converts the assembly code into the machine language (binary
code) which can be executed by the CPU. Because the majority of commands
in a PLC program are independent from each other it is possible to save mem-
ory and increase interpretation speed if commands are handled one by one in the
assembler after the labels and variables relevant to multiple steps (blocks) have
been handled.

5. Finally, the native code is transmitted to the internal memory when the PLC is
idle. It is then executed sequentially.

In consequence, the PLC program edited by a programmer is converted to an
executable binary code by a compiler and is sent to the PLC memory. Fast scanning
becomes possible compared with the interpretation method.

7.3 PLC Programming

There are a variety of the programming languages to represent logic sequences and
the IEC (International Electrical Committee) classifies the programming language
into the statement list representation and the graphical representation.

As the graphical language, there is the ladder logic that is a method of draw-
ing electrical logic schematics. As the statement list (textual) language, there are
mnemonic language, Boolean language, and machine language. In practice, the lad-
der logic, which can be easily mapped with a sequence logic drawing, has been
widely used. Figure 7.4 shows a ladder diagram and a mnemonic program that has
same meaning as the ladder diagram.

Because the symbols and commands used in ladder logic and mnemonic language
are slightly different, depending on the makers, it is essential to edit new programs
when the PLC system is changed.

Table 7.2 shows the mnemonic symbols of the basic and advanced command sets
(e.g. timer/counter function, control function and register manipulation function) for
Yasnac’s PLC programming.

In a typical PLC program, basic commands such as LD, LD-NOT, AND, AND-
NOT, OR, OR-NOT, and OUT are widely used. The Timer function, which sets the
output port as ON or OFF after a pre-determined time, is widely used. Basically,
the Timer measures the specified time by counting the time-based pulses generated
every constant time interval and multiplying the number of pulses counted by the
sampling time for pulse generation. The Timer sets the output port as ON of OFF
after the specified time. According to the PLC system, the sampling time of pulse
generation can be set as 10 ms, 100 ms, and 1 s. The Timer can be classified as one
of two types: an UP-timer, which counts the incremental time to the specified time, or
a DOWN-timer, which counts downwards with decremental time from the specified
time.
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Fig. 7.4 Ladder diagram and mnemonic program

A Counter is used for counting time like the Timer. However, unlike the Timer,
the Counter uses an external input signal, whereas the Timer uses the internal time
base pulse for counting time.

Unlike the initial PLC systems, which enabled the fundamental logical opera-
tions, a modern PLC system can perform the four arithmetical operations of BCD
values, conversion between decimal and hexadecimal values, branching operations
(e.g. JUMP and CALL), and trigonometrical functions and special functions for ad-
vanced control.

Editing PLC programs is outside the scope of this book. If you want more infor-
mation about PLCs, refer to the related books on PLC.

7.4 Machine Tool PLC Programming

The PLC system of a CNC machine tool executes not only M-, T- and S-codes spec-
ified in a part program but also activates or inactivates external switches, executing
the PLC program together with input signals from the sensors in machine tools.

Therefore, when we create a PLC program for a CNC machine tool, special con-
siderations are necessary compared with the general PLC system. However, from a
functional point of view, the two types of PLC system are not different.

The role and characteristics of a PLC program in a machine tool are summarized
as follows:

1. The PLC program sends the status of the operation panel to the NCK and shows
the status of the NCK to the operator via the operation panel.
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Table 7.2 Basic commands and functional commands for PLC programming

Type Instruction Meaning
LD Regular contact used in beginning of step.

LD-NOT ‘Not’ contact used in beginning of step.
AND Regular contact that represents the serial

connection in Ladder diagram.
AND-NOT ‘Not’ contact that represents the serial

connection.
OR Regular contact that represents the

parallel connection.
OR-NOT ‘Not’ contact that represents the

parallel connection.
Basic XOR Exclusive OR.

command XNR Exclusive AND.
STR After storing the operation result on

stack, perform LD command.
STR-NOT After storing the operation result on

stack, perform LD-NOT command.
AND-STR Operation result AND the value on stack.
OR-STR Operation result OR the value on stack.

OUT Ouput the operation result.
Timer TIM Fixed timer.

TMR Variable timer.
NOP No action.

Control MCR If input condition is ON, the program
is performed until END.

command END Represents the end of MCR command.
RET Represents the end of PLC program.
RTI If input condition is ON, perform RET

command.
SET Set ON.
RTH Rep. end of high-speed PLC program.
JMP Jump to the number specified by ADR.
ADR Specify the number to which is jumped

by the JMP command.
INR Increase the value in register by one.

Register DCR Decrease the value in register by one.
command CLR Reset the register.

CMR Reverse the register
ADI Add value of register to the specified

value.

i. The operator changes the machine operation mode (e.g. Auto mode, MDI
mode, and Zero Return mode) by turning on or off switches on the operation
panel. The change of machine operation mode is sent to the NCK by a PLC
program.

ii. The operator controls the axis’ movement, such as JOG, cycle start, or
emergency stop by turning on or off switches on the operation panel.

iii. By turning on or off the LEDs and lamps on the operation panel, the PLC
program displays the execution status of a part program.
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2. Through interaction with the NCK, a PLC program helps the execution of a part
program.

i. A PLC program prevents execution of the next block until the execution of
an M-code is completed.

ii. PLC program prevents execution of the next block until the spindle speed
reaches the value specified by an S-code.

iii. The PLC program prevents execution of the next block until the tool spec-
ified by a T-code has been attached to the spindle.

3. A PLC program provides various interlock functions to prevent the operator and
the workpiece being damaged.

i. It prohibits rotation of the spindle in the case of the chuck being unclamped.
ii. It stops axis movement as soon as the spindle is stopped.
iii. It changes operation mode to single block mode when the coolant’s motor

is overheated.

The general procedure for editing a PLC program is follows:

1. Assign addresses to the input and output ports,
2. Assign addresses to the internal relays and counters,
3. Design the sequence circuit to enable the intended logical operation based on the

assigned addresses,
4. Select the appropriate programming language and edit the PLC program in the

selected language,
5. Load the PLC program to the CPU module and carry out debugging.

The first step for editing a PLC program for a machine tool is to assign addresses
to the input and output ports. The address means the connection point for transmitting
the signal from/to the machine tool, CNC, relay, timer, counter, and data table. The
type, transmitting direction, and reserved address for PLC programming are shown
in Fig. 7.5. In the PLC shown in Fig. 7.5, the X address denotes the input signal
transmitted from the machine to the PLC and the Y address denotes the output signal
transmitted from the PLC to the machine. It is assumed that the number of input
signals and output signals are both 64. ‘G’, ‘F’, and ‘R’ are used to represent the
signal output from the PLC to the CNC, the input from the CNC to the PLC, and
the internal relay. In addition, 16 32-bit timers and counters are defined and the 2048
bytes are allocated to the internal memory.

According to the addresses assigned in Fig. 7.5, the address definition for PLC
programming is partially shown in Fig. 7.6.

After assigning the addresses, the sequence flow is designed and programming
is performed as described in the sequence flow. Figure 7.7 shows an example of a
typical sequence flow for a 3-axis machining center. The following addresses how to
design the sequence flow of a PLC program.

1. The first thing at the beginning of a program is to check the condition of the
emergency stop.
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Fig. 7.5 Type, transmitting direction, and reserved address for PLC programming

2. Next is to design a sequence flow to handle an axis operation and transformation
mode input from the user interface panel.

3. After step 2, the processes for handling T, S, and M codes are designed. For the T-
code operation, the control flow related to the tool magazine rotation, tool change
mechanism, spare tool management, turret rotation of a lathe, etc. should be con-
sidered. Several subroutines are essential for magazine operation of the machining
center, as examples are 1) a rotational direction decision for the shortest distance
based on the current tool position, 2) an ACC/DEC control for smooth rotation of
the magazine, and 3) interrupt handling for high-speed rotation of the magazine,
etc.

4. In the case of an S-code, the essential subroutines for spindle operation are rela-
tively simple. Examples of necessary subroutines are 1) generation of a spindle-
enable signal, 2) generation of a rotation direction (CCW or CW) signal, and 3)
checking whether rotational speed is as commanded by communication with the
NCK system, etc.

5. For handling of M-codes, the machine-specific sequence flow should be designed
including M03 (Spindle CW), M04 (Spindle CCW), M05 (Spindle stop), M08
(Supply the cutting fluid), M09 (Stop supplying the cutting fluid). However, it is
not necessary to design the conventional M-codes commonly interpreted by all
types of machine, such as M00 (Program stop temporarily), M01 (Program stop
if an optional stop button is pressed), M02 (Program end), and M30 (Program end
and repeat) because the NCK system is handled in the normal CNC system.

6. Finally, the processes for turning on the ramps and displaying the messages for
the user interface are designed.
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Fig. 7.6 PLC programming signal definition (partial)

As can be seen from the above programming procedure, third parties have diffi-
culty in understanding the PLC program without detailed descriptions and sequence
charts. Also, re-programming is needed to add and modify other functions. Due to
the absence of a standardized programming language, a programmer must know a
variety of languages depending on different PLC systems and makers. This makes
the training of a programmer and the maintenance of the PLC system difficult.
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Fig. 7.7 Typical 3-axis machining center sequence flow

7.5 PLC System Functions

In order to establish Factory Automation, enabling cost reduction, unmanned oper-
ation, and quality improvement, it is essential to build a network system to connect
various automation units (e.g. CNC machine tools, FA robots, PLCs, sensors and
actuators) and the production management system (e.g., MRP system and POP sys-
tem).

Among these, the importance of the PLC, which is applied to various areas, has
been emphasized, not only as the logic controller but also as the core technology for
building FA systems. Therefore, as functions of the PLC, advanced control functions,
a user-friendly interface, and network interface functions for communication with
sensors and management systems are required.

However, the PLC system is generally a closed system and depends highly on the
maker’s own technology. This means that the user can use only the functions pro-
vided by the maker and the user’s own technology and functions cannot be applied.
Because of this, whenever the PLC system is changed, the user should be re-trained
and the PLC program should be re-programmed. To solve the above-mentioned prob-
lem, compatibility and openness of PLC system are necessary. For this, the PLC
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system has advanced to become an open PLC system that can meet the following
requirements:

1. Portability: The PLC program can be operated and is reusable regardless of PLC
system and maker.

2. Connectivity: Communication (data transmission) between PLC systems whose
makers are different should be guaranteed.

3. Standardization: The user interface and programming language are unified regard-
less of system and maker.

For example, the PLC systems and programming languages mentioned in previ-
ous sections are not compatible with other systems and languages that other makers
provide. Therefore, users should learn the maker’s own programming languages. It
is also very difficult for third parties to understand and modify PLC programs. In ad-
dition, when a new function is added, it is almost impossible to guarantee successful
execution within a specified time.

To overcome these problems, the activity for standardizing programming envi-
ronments for industrial automation equipment was started and the IEC, (Interna-
tional Electrotechnical Commission), established IEC1131-3 in 1993. The standard
IEC1131, is the international standard for PLC, consisting of five parts and IEC1131-
3 is one of the parts of which IEC1131 is composed.

1. IEC1131-1: PLC General information.
2. IEC1131-2: Equipment and test requirements
3. IEC1131-3: PLC programming language
4. IEC1131-4: User guidelines
5. IEC1131-5: Communications

IEC1131-3 is the international standard for programmable controller program-
ming languages. It specifies the syntax, semantics and display for the following suite
of PLC programming languages: 1) Ladder diagram (LD), 2) Sequential Function
Charts (SFC), 3) Function Block Diagram (FBD), 4) Structured Text (ST), and 5)
Instruction List (IL).

If we use IEC1131-3 to edit a PLC program, it is possible to obtain the following
advantages:

1. Because syntax and semantics are unified, it is possible to generate a program
that can be operated on all makers’ systems and the program can be executed
regardless of maker.

2. It is easy to maintain the program.
3. Because the standard supports the structured programming method, any complex

program can be edited in easily understandable and structured format and can
easily be maintained.

4. Due to the rigorous syntax and semantics it is possible to reduce program error.
5. The standard makes modularization of a program easy and it is possible to in-

crease the efficiency of programming using program modules.
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However, the following disadvantages have been identified:

1. Compared with the sequence programming method, the programming procedure
is complex due to computer programming.

2. Much effort is needed to understand and know the grammar of the programming
language.

3. Due to the rigorous grammar, the flexibility of programming is restricted.
4. Because IEC1131-3 is heavy, it is not appropriate for application in small-sized

PLC systems.

IEC1131-3 consists of the configuration model of a PLC system, five program-
ming languages, and the common generality of programming languages.

The software model and communication model address the name and definition
of the parts from which a PLC system is composed and the data transmission mecha-
nism between running programs. In the Programming model, not only basic elements
such as identifiers, keywords, data types, and variables but also program elements
such as functions, function blocks, programs, resources, and tasks are described as
the common factors of the programming language.

To understand IEC1131-3, it is necessary to undertake a study of the configuration
model, which represents the design concept of a PLC system and includes a software
model, communication model, and programming model.

7.5.1 Software Model and Communication Model

In the introductory part of IEC1131-3 the software model is described and represents
the PLC system as a controller with multitasking-enabled architecture, as shown in
Fig. 7.8.

In the software model,

1. Configuration is the top-most concept that represents the PLC system and includes
all the software that is contained in one PLC system.

2. Resource is the element that makes up the configuration and means the functions
that a processor board provides. It consists of the software that is needed to exe-
cute a PLC program.

3. Program means the logical management unit of a user program and is edited by
one of the languages specified by IEC1131-3.

4. Function block is a key concept of IEC1131-3 and makes a program structured
and modularized. It is the logical management unit for data transmission and con-
sists of the data for defining input/output parameters and the algorithms for per-
forming specific functions.

5. Task represents how a program or function block works. It begins iteratively or
by a specific trigger.
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Fig. 7.8 IEC1131-3 Software Model

6. Function is one of the elements of which a program is composed. It is different
from the function block, and it denotes the software that generates a single output
from a specific input.

7. Access path does not exist in a single resource system. In multiple resource sys-
tems it manages the data of elements and the communication between elements.
There are various ways to transmit data in a PLC system. In a program, internal
variables are used. To input and output the data to the program, function, and
function block, input variables and output variables are used. To share resource
or configuration information between programs, external variables that specify
them are used. In addition, data transmission between configurations is done by
the communication object defined by an access path. Using the access path, it is
possible to exchange data between the functions and the programs that are located
in different resources or configurations.

Comparing PLC systems with the software model in IEC-1131-3, we can regard
the controlled system as configuration. Configuration exchanges data or information
with other configurations via Access paths (only specific variables can be transmitted
via access paths and extended communication functions, as specified in IEC1131-5).

This configuration consists of one or multiple resources and each resource con-
sists of one or multiple tasks. Because of the high functionality of PLC systems,
multiple processing is required and the CPU board can be regarded as a resource.
Each task executes a program or function block based on regular interrupts or irreg-
ular triggers. Consequently, this systematic structure makes it possible to execute a
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lot of individual programs synchronously. In addition, resource has a function for
supporting the interface between I/O channel and a program.

Furthermore, small-sized PLC systems consist of one processor and one piece
of software that controls single operations. A single configuration is formed, even
in the case of large-sized PLC systems with multiple processors, a variety of re-
sources (multiple processors) are controlled in real-time. In the case of complicated
distributed systems, a system is composed of more than one configuration connected
by a network and each configuration can include any resource or program on the
network.

As is known from the software model, the key concept of IEC1131-3 is to sup-
port the structured programming concept. Actually, by using the task, function, and
function block mentioned in the software model, it is possible to change the pro-
gramming style of the user. Therefore, by using IEC1131-3 it is possible to design
a PLC system by distinguishing an iterative task and an interrupt-driven task (or
event-driven task). Furthermore, it is possible to divide the iterative tasks into tasks
with the same iteration time. In addition, by implementing common tasks or pro-
grams as functions or function blocks, it is possible to decrease the program size.
Consequently, this structured programming method enables the modularization of
programs and this modularization increases the productivity and maintainability of
large-sized PLC systems.

7.5.2 Programming Model

The programming model describes the relationship between the common elements
of the programming language specified in IEC1131-3. The programming model is
based on the concept of derivation and reuse. In other words, the programmer can
define new data types from basic data types, new functions or function blocks from
basic functions (or standard functions) and can make libraries using them. These li-
braries can be used not only in an identical system but also in other non-identical sys-
tems. The reusability of programs enables advanced programming techniques such
as libraries, functions, and function blocks and provides ease and reliability of pro-
gramming.

As mentioned above, as IEC1131 is the international standard for PLC, it consists
of a configuration model and a programming model. To build the standard and open
system, it is necessary for the PLC system developer to design the system and the
functions based on IEC1131. It is also necessary to design the interpreter for the
standard programming language. As well as programmers or system designers, it
is also necessary for system users (operators) to understand the key concepts and
functions.
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7.5.3 User Programming Languages

In IEC1131-3, five programming languages (actually, four languages and one com-
mon element) are specified; LD (Ladder Diagram), IL (Instruction List), ST (Struc-
tured Text), FBD (Function Block Diagram), and SFC (Sequential Function Chart).
The user can select the appropriate language depending on the characteristics of the
program.

Actually, SFC is not a programming language for implementing the control pro-
gram, but the representation tool to depict all sequences of a control program. As
shown in Fig. 7.9, SFC classifies continuous tasks into Steps as well as Transitions,
which are the conditions for shifting between steps, and Actions, being the job to be
performed at a step.

In other words, SFC is composed of multiple steps, the module of a program, an
action block associated with a particular step, and a transition to represent the con-
dition for shifting between steps. This graphical representation method is based on
Petri-nets or IEC848. SFC can be used not only by itself but also with other program
languages specified in IEC1131-3. Therefore, SFC is used as a common element in
IEC1131-3. SFC supports not only conditional sequencing but also parallel sequenc-
ing where one sequence monitors or executes a background task simultaneously with
another performing the main control.

Step 1

Step 2

Step 3

Transition 1

Transition 2

N Action 1

S Action 1

Fig. 7.9 SFC continuous task classification

For effective programming, it is necessary to reuse functions or partial programs.
For this, functions, function blocks, and programs are reused in application pro-
grams. A function is composed of basic functions such as ADD, ABS, SQRT, SIN,
and COS and user-defined functions. A function block contains data and algorithms,
as semiconductor hardware, which enables the specific function. It can be reusable
in other application programs. In addition, Functions, function blocks, and programs
are common elements that can be used in all programming languages specified in
IEC1131-3.

Besides SFC, the possibility of powerful data addressing is another common el-
ement. It is used to prevent a programmer from substituting (allocating) a different
data type to a variable. Boolean type, integer type, byte type, word type, date type,
and date-time type are defined as the data types of IEC1131-3. Local variables and
global variables can be used as variables in IEC1131-3. A local variable is a variable
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that can be used only within software elements where it is defined. Global variables
mean variables that can be used over whole software elements. It is also possible to
define direct pointer variables that refer directly to memory locations.

Objective:
I1.3 I1.3

If input port I 1.3 becomes ON, the output 
port Q0.0 is Set

If input port I 3.1 becomes ON, the output 
port Q0.0 is Reset

IL(instruction list) ST(structured text)
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ANDN   I 3.1
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IF I 1.3:= ON THEN
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IF I 3.1:=ON THEN
Q 0.0:=RESET;
END-IF
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Alarm_SR
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I 3.1
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R Q
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AlarmI 1.3

I 3.1 Q 0.0

Q 0.0

Fig. 7.10 The PLC languages specified in IEC1131-3

The key characteristics of the four languages specified in IEC1131-3 are summa-
rized in Fig. 7.10 with the above-mentioned common elements. For convenience of
understanding, the program that sets or resets the output port depending on the type
of input is edited by four languages and the basic format of each language will be
described.

Among the four languages, IL (Instruction List) and ST (Structured Text) are tex-
tual languages, while the LD (Ladder Diagram) and FBD (Function Block Diagram)
are graphical languages.

1. IL, which is widely used in Europe, is a low-level language like assembler. The
advantage of IL is that it is adequate for small-sized programs thanks to simple se-
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quences and logic. It can be used for describing transitions in SFC with function,
function block, and program sequences.

2. As ST is a high-level language, it is related to Ada, Pascal, and C. By using ST, it
is possible to allocate values to variables and describe tasks by wiring functions,
function blocks, and program blocks. Conditional branching and iteration loops
are possible too. It can also be used to describe steps, action blocks, and transi-
tions. In addition, it is adequate for numerical calculation and defining complex
function blocks.

3. LD is a well-known language. A program is composed of a combination of input
and output contacts. LD is used not only for editing the control program but also
monitoring the output/input contacts while a program is being executed. In addi-
tion, with functions, function blocks, and programs, it can be used for describing
the results of transitions in SFC.

4. FBD is a graphic-based language. It is largely used for programming signal flow
between control blocks because of its easy understanding of the flow of a program.
FBD is similar to electric circuits including the signal flow of process control. It
can be used for describing the behavior by wiring functions, function blocks, and
program blocks and describing the step, action block, and transition in SFC.

7.6 Soft PLC

In the late 1960s, after GE powertrain introduced the concept of the PLC system that
replaced the relay board, PLC systems that control a variety of processes by using
simple sequence programs has been widely used for 40 years.

However, as the controlled systems have become more complex, faster, and larger,
the demand for openness and standardization of PLC systems has increased. To meet
this requirement, the PLC system has been changed from a hardware-based system
to a software-based system. Consequently, Soft PLC systems, which operate from
personal computers and enable logical sequence control functions in real time, were
introduced. With the advancement of the PCs performance, Soft PLC systems have
come to provide not only conventional sequence control functions but also easy user
interfaces, network communication functions, and advanced functions for factory
automation. In Soft PLC systems, the basic and advanced functions of PLC and
communication functions are executed by one processor module, except for input
and output modules. It is possible to make a standardized PLC system based on the
software model and programming languages specified in IEC1131-3.

Figure 7.11 shows an example of a Soft PLC that has been applied to the transfer
line in Ford Motors. In this system, the interface board that can be connected to
various I/O devices (e.g., AB1771, Seriplex, OPTO 22) is built into a PC that contains
the Soft PLC system. This system is a good example of a Soft PLC system that
satisfies the openness requirement by using PC hardware.

To develop a soft PLC system, real-time operation and reliability of response,
which are key requirements for industrial PLC systems, should be guaranteed. Ba-
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Fig. 7.11 Soft PLC automotive transfer line

sically, though, PC operating systems cannot satisfy these. However, the non real-
time property of DOS or Windows OS can be overcome by various methods and the
method of designing a soft PLC system will be described together with design of
Soft-NC in the later in this textbook. In Soft-NC, a PC is used as the hardware plat-
form and all CNC functions including PLC functions are implemented in software.
In this point, Soft PLC is very similar to Soft-NC. Furthermore, Soft NC includes
more functions than Soft PLC, used for NCK control and MMI. Therefore, if NCK
functions and MMI functions are omitted or simplified from Soft NC, Soft NC and
Soft PLC can be regarded as the same system. Soft PLC which is made by a user
interface and the PLC kernel based on the IEC1131-3 can be regarded as partial
systems of Soft-NC.

Figure 7.12 shows the open CNC system of MDSI. The figure shows that the CNC
system consists of Interpreter (NC Code Parser), Servo controller (Servo Algorithm),
Interpolator (Path/trajectory Planning) for NCK, user interface for MMI, Soft PLC
for PLC, and APIs for external users. This model shows that Soft PLC is one of
the software modules from which a CNC system is composed. If you want to know
more details about the hardware configuration and software of a Soft PLC, please
read other references about Soft-NC and Open CNC systems.

7.7 PLC Configuration Elements

In this section, the configuration and execution structure of a PLC system will be
addressed from the system designer’s point of view. Also, implementation of the
PLC program executor will be shown.
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7.7.1 PLC System Functions

The execution environment and main functions of a PLC system can be summarized
as in Fig. 7.13. The PLC program, which is interpreted and executed by the CPU
module, is edited by an external PLC programmer. The PLC programmer consists of
the editor module, compiler module, and communication module. The editor mod-
ule is used for editing the program, the compiler module is used for translating the
edited program into a CPU-understandable language, and the communication mod-
ule is used for transmitting the PLC program into the CPU module. In addition, the
monitoring module is used for sending the PLC status to the PLC programmer and
displaying the PLC status.

PLC Programmer

Editor Compiler

PLC Monitor
Display

Reverse Conversion

Lexical
Analysis

Error
Check

Code
Conversion

Down Loading

Up Loading

CPU Module
Receive Machine Status & 
Save at Machine Input Data Flag

Read PLC Program line by line &
Excute Logical operation

CPU & RAM -Data
Machine

Input
Data Flag
Machine
Output

Data Flag

Internal Relay

Internal Timer

Internal Counter

Save operation result
at Machine Output 

Data Flag

Output Machine Outpit Data to the output module &
Start re-scanning

Input Module

Output Module

Fig. 7.13 Execution environment and main functions of a PLC system
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The PLC programmer should have a program editor that provides an easy user-
interface and supports PLC programming languages such as Ladder, Mnemonic, and
Function block. The specification of the editor is given in IEC1131-3.

The PLC programmer can be implemented as one of two types; one is the ‘in-
terpreter type’ and the other is the ‘compiler type’. In the interpreter type, a native
program, which a user edits using some particular procedure, is interpreted line by
line and executed whenever it is needed. In the compiler type, a native program is
converted once to a CPU-understandable binary or hexadecimal file and, whenever
necessary, the compiled file is sent to the CPU module and executed.

Typically, a PLC programmer is implemented by the compiler type in order to
realize high-speed execution. Let’s see the procedure of a compiler. A compiler reads
one block of a native program line by line and divides the lines into elements from
which the block is composed.

As a sentence of a natural language consists of multiple words, a block of a pro-
gram is composed of tokens (e.g., constant values, variables, operators, and key-
words).

The compiler recognizes the tokens and finds the meaning of the words by analyz-
ing the tokens, syntax, and schema. The compiler searches for relationships between
tokens. The compiler generates intermediate code based on the previous result. The
compiler generates optimized code from the intermediate code for effective execu-
tion. Finally, it generates the instruction code.

A compiler is the software that converts a native program into CPU-understand-
able code. It provides the functions that transmit compiled code to the CPU module
and monitors the execution status of the PLC system.

The main task of the CPU module is to read and execute a binary program from
the PLC programmer. We call this module the ‘executor’ and how the CPU module
works is as follows. Firstly, the CPU module receives the machine status from the
input port and stores it to the machine input data flag. In the next step, it reads the
PLC program (binary code) line by line and carries out the logical operations. At
this moment, the internal relay, timer, counter, and input data flag are referenced.
The result from one line execution is saved to the machine output data flag and,
finally, the values from the machine output data flag are sent to the output port for
actuating the relay, solenoid, and user interface.

If one scan like that mentioned above has been completed, the executor repeats
the scan by reading the input ports (or address). Therefore, for designing the PLC
system, it is necessary to understand the behavior of this executor.

In Table 7.3, the set of PLC programming instruction is summarized together
with a description of the instruction set, mnemonic format, and function description.
This instruction set consists of the basic instruction set for the editing sequence and
the functional instruction set for describing tasks that are difficult to describe using
only basic instruction sets. The functional instruction set includes sequence control,
timer/counter, arithmetic operations.
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Table 7.3 PLC programming commands and functions

Command Mnemonic Function

Read RD X1.0 Read the specific address.
Read Not RND X2.1 Read the specific address and

reverse the value.
Write WR Y1.0 Write the operation result to the

specified address.
Write Not WRN Y2.0 Reverse the operation result and

write the reversed result to the
specified address.

And AND X3.2 Perform logical product between
the value of the specified address
and the value on the stack register
and store the result on the stack.

And Not ANDN Y0.2 Reverse the value of the specific
address, perform logical product
between the reversed value and
the value on the stack register, and
store the result on the stack.

Or OR Y2.7 Perform logical sum between the
value of the specified address and
the value on stack register and
store the result in stack.

Or Not ORN G2.1 Reverse the value of the specified
address, perform logical sum
between the reversed value and the
value on the stack register, and
store the result on the stack.

Read Stack RDS Y3.1 Shift the values of the stack to the
left and store the value of the
specified address in bit 0 of stack.

Read Not Stack RDNS R1.7 Shift the values of the stack to the
left and store the reversed value of
the specific address in bit 0 of
stack.

And Stack ANDS Perform logical product between
the values of the lower two bits,
save the result in the first bit of
stack, SR1, and shift the values
of stack to the right.

Or Stack ORS Perform logical sum between the
values of lower two bits, save the
result in the first bit of stack, SR1,
and shift the values of stack to the
right.
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Table 7.3 (continued)
End of P/G END Terminate the program.
Timer TMR #5, 4000 When the input signal is ON, the

timer with specified number is exec-
uted during the specified time.

Counter CTR #1, 100 Whenever the input signal is
changed to ON from OFF, the
counter with the specified number
is actuated. When the count
reaches the specified number, the
counter output maintains ON status
before receiving the reset signal.

Move MOV 7, X1.2 Copy the left operand to the right
operand.

And Move ANDM 1, 3, When the input signal is ON, perf-
Y2.3 orms logical product between the

values of left operand and middle
operand and finally saves the res-
ult in the right operand.

Or Move ORM 3, 7, When the input signal is ON, perf-
X1.1 orms a logical sum between the

values of the left operand and the
middle operand and finally saves the
result in the right operand.

Call CALL Rosa When the input signal is ON, call
the subroutine with the specified
name.

Subroutine SBRT Stephy Start the sub routine.
Return RET Terminate the sub routine.
Jump JMP Khang When the input signal is ON, jump

to the program part starting with
the specified label.

Equal EQU 5, X1.0 When the input signal is ON, if the
value of the left operand and the
value of the right operand are equal,
set the specified bit as ON. Other-
wise, set the specified bit as OFF.

Greater Than GT Y1.1, 10 When the input signal is ON, if the
value of the left operand is greater
than that of the right operand, set
the specified bit as ON. Otherwise,
set the specified bit as OFF.

Less Than LT 10, X4.0 When the input signal is ON, if
the value of the left operand is less
than that of the right operand, set
the specified bit as ON. Otherwise,
set the specified bit as OFF.
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Table 7.3 (continued)
Shift Right SFTR X1.0,5 When the input signal is ON, shift

the value of the left operand to the
right as many bits as given by the
right operand.

Shift Left SFTL Y1.1, 3 When the input signal is ON, shift
the value of the left operand to the
left as many bits as given by the
right operand.

Addition ADD 1, 2, X1.7 When the input signal is ON, add
the values of the left operand and
the middle operand and store the
result to the right operand.

Subtraction SUB 3, 1, Y3.1 When the input signal is ON,
subtract the values of the left
operand and the middle operand
and store the result to the right
operand.

Multiply MUL 2, 5, X1.3 When the input signal is ON,
multiply the values of the left
operand and the middle operand
and store the result to the right
operand.

Division DIV 4, 2, Y2.2 When the input signal is ON, div-
ide the value of the left operand by
the value of the middle operand
and store the result to the right
operand.

Inverse INV X1.1, 5 When the input signal is ON,
reverse the bit of the address
specified by the left operand
as specified by the value of the
right operand.

Since the above functions denote how a sequence program (logic program) is
interpreted and executed in the program executor, an in-depth understanding of them
is needed to design a PLC program executor.

7.7.2 Executor Programming Sequence

To describe the sequence execution function of a PLC executor, let’s use the program
that was edited by the ladder diagram or mnemonic shown in Table 7.4.

The program that the user edited in a ladder diagram is converted into mnemonic
form to be executed by an interpreter-type executor. Alternatively, the user can edit
the program directly in mnemonic form. The executor that is designed in this text-
book handles the operations via a stack register. During execution of the mnemonic
program, the operation results are temporarily stored in a stack register and the op-
erations continue by using the values from the stack register. For example, the result
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of the current operation is stored in SR0, the zero bit of the stack register. Through
continuous operations, the data in SR0 shifts to SR1 and a new value is stored on
SR0. Therefore, the previously stored value is shifted to the right and is saved by
the RDS command. To recall the value saved by the RDS, the ANDS command is
utilized.

As a practical example, when the executor performs the tasks from line number
10 to line number 30, the behavior of the executor is as follows.

1. The executor reads address X0.1 using the Read command and carries out the
logical operation and saves the the result of the operation in SR0.

2. It reverses the logic status of address Y2.1 and executes the AND operation (log-
ical product) between the serial-connected previous operation result and the re-
versed status of Y2.1. The operation result is saved in SR0.

3. To execute parallel-connected instructions, the value of SR0 is shifted to SR1
using the RDS command and the value of address Y0.1 is stored in SR0.

4. It executes the AND operation (logical product) between the value of address
X1.1 and the value of SR0 and the result is saved in SR0.

5. OR operation (logical sum) between SRB0 and SRB1 is executed and the result
is stored in SR0.

6. Finally, the value of SR0 is output to address Y4.3.

Subsequently, reading the status of the input port, executing the logical operation
by using the status via stack register and storing the result to the output port are
repeated.

7.7.3 Executor Implementation Example

In this section, a real implementation example of the executor capable of handling
the commands shown in Table 7.3 will be described. As an example, the programs
for the basic instruction sets are described. The programs for the functional instruc-
tion set including comparison function of the values of two registers, and the four
fundamental arithmetic operations can be achieved by extending the method shown
in the basic instruction cases.

7.7.3.1 Stack Register

The stack register saves the temporary operation result. It is assumed to be composed
of 16 bits as follows:

SR15 SR14 · · · SR5 SR4 SR3 SR2 SR1 SR0

low end bit �
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Table 7.4 Comparison between Ladder diagram and mnemonic programming

Ladder diagram Mnemonic

In order to save the result of previous operation, the values of whole bits of the
stack register are shifted to the left. When the recall command is invoked for recalling
the stored value, the values of whole bits of the stack register are shifted to the right,
and the value shifted last comes first.

class CPLCStack
{
public:

CPLCStack();
virtual∼CPLCStack();

private:
bool m stack[STACKSIZE];

public:
void RD(char simbol, int upperadd, int loweradd);
void RDN(char symbol, int AddNum, int BitNum);
void WR(char symbol, int AddNum, int BitNum);
void WRN(char symbol, int AddNum, int BitNum);
void AND(char symbol, int AddNum, int BitNum);
void ANDN(char symbol, int AddNum, int BitNum);
void OR(char symbol, int AddNum, int BitNum);
void ORN(char symbol, int AddNum, int BitNum);
void RDS(char symbol, int AddNum, int BitNum);
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void RDNS(char symbol, int AddNum, int BitNum);
void ANDS(char symbol, int AddNum, int BitNum);
void ORS(char symbol, int AddNum, int BitNum);

public:
void LShift(int i);
void RShift(int i);

};
void CPLCStack LShift(int i)
{

for(int j = STACKSIZE−1; j >= i; j−−)
m stack[j] = m stack[j-i];

}
void CPLCStack::RShift(int i)
{

for(int j = 0; j < STACKSIZE− i; j++)
m stack[j] = m stack[j+i];

}

out one-bit operations and consist of twelve commands. To order basic commands
they are represented as follows:
(Command [Address name][Address number].[bit number]]
(Note that the ADNS and ORS commands are used without any arguments).

a) RD (READ)

• This command is to read the value of the specified address and save the value read
in SR0.

• It is used for A-type switch.
• Program structure

- Ladder Diagram

- Coding sheet and operation result

void CPLCStack::RD(char symbol, int AddNum, int BitNum)

7.7.3.2 Basic Command

The basic commands are mainly used for building the sequence program. They carry
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{
CSoftPLCDoc* pDoc = GetDoc();

int index;
bool value;
switch (symbol) {

case ’X’:
// Get the logical status of the particular address.
index = AddNum*8 + BitNum;
value = pDoc−>XAddress[index];
break;

case ’Y’:
// Get the logical status of the particular address.
index = AddNum*8 + BitNum;
value = pDoc−>YAddress[index];
break;

default:
break;
}

m stack[0] = value; // Save the status of SR0
}

b) RDN (READ NOT)

• This command is to read the value of the specified address, reverse the value, and
save the reversed value to SR0.

• This is used for B-type switch.
• Program structure

- Ladder diagram

- Coding sheet and operation result

void CPLCStack::RDN(char symbol, int AddNum, int BitNum)
{

CSoftPLCDoc* pDoc = GetDoc();
int index;

bool value;
switch (symbol) {

case ’X’:
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// Get the logical status of the particular address.
index = AddNum*8 + BitNum;
value = pDoc−>XAddress[index];
break;

case ’Y’:
// Get the logical status of the particular address.
index = AddNum*8 + BitNum;
value = pDoc−>YAddress[index];
break;

default:
break;

}
m stack[0] = !value; // Save the reversed status of SR0

}

c) WR (WRITE)

• After completing logic operation, it commands to output the value of SR0 to the
specific address.

• The logic operation result can be output to more than one address.
• Program structure

- Ladder diagram

- Coding sheet and operation result

void CPLCStack::WR(char symbol, int AddNum, int BitNum)
{

CSoftPLCDoc* pDoc = GetDoc();
int index;
switch (symbol) {

case ’X’:
// Output the logical status to the specific address.
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index = AddNum*8 + BitNum;
pDoc−>XAddress[index] = m stack[0];
break;

case ’Y’:
// Output the logical status to the specific address.
index = AddNum*8 + BitNum;
pDoc−>YAddress[index] = m stack[0];
break;

default:
break;

}
}

d) WRN (WRITE NOT)

• After completing logical operation, this commands reversal of the value of SR0
and output of the reversed value to the specified address.

• Program structure

- Ladder diagram

- Coding sheet and operation result

void CPLCStack::WRN(char symbol, int AddNum, int BitNum)
{

CSoftPLCDoc* pDoc = GetDoc();
int index;
switch (symbol) {

case ’X’:
// Output the reversed logical status to the specific address.
index = AddNum*8 + BitNum;
pDoc−>XAddress[index] = !m stack[0];
break;

case ’Y’:
// Output the reversed logical status to the specific address.
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index = AddNum*8 + BitNum;
pDoc−>YAddress[index] = !m stack[0];
break;

default:
break;

}
}

e) AND (AND)

• It commands to perform the AND operation (logical product) between the values
of the specified address and SR0 and save the operation result to SR0.

• Program structure

- Ladder diagram

- Coding sheet and operation result

void CPLCStack::AND(char symbol, int AddNum, int BitNum)
{

CSoftPLCDoc* pDoc = GetDoc();
bool state;

int index = AddNum*8 + BitNum;
switch (symbol) {

case ’X’:
// Get the logical status of the particular address.
state = pDoc−>XAddress[index];
break;

case ’Y’:
// Get the logical status of the particular address.
state = pDoc−>YAddress[index];
break;
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default:
break;

}
if(m stack[0] && state)

m stack[0] = true;
else

m stack[0] = false;
}

f) ANDN (AND NOT)

• This commands reversal of the value of the specific address, execute the logic
product with the value of SR0, and save the result on SR0.

• Program structure.

- Ladder diagram

- Coding sheet and operation result

void CPLCStack::ANDN(char symbol, int AddNum, int BitNum) {
CSoftPLCDoc* pDoc = GetDoc();
bool state;

int index = AddNum*8 + BitNum;
switch (symbol) {

case ’X’:
// Get the logical status of the particular address.
state = pDoc−>XAddress[index];
break;

case ’Y’:
// Get the logical status of the particular address.
index = AddNum*8 + BitNum;
state = pDoc−>YAddress[index];
break;
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default:
break;

}
if(m stack[0] && !state)

m stack[0] = true;
else

m stack[0] = false;
}

g) OR (OR)

• It commands to execute OR operation (logical sum) between the values of the
specific address and SR0 and save the result on SR0.

• Program structure

- Ladder diagram

- Coding sheet and operation result

void CPLCStack::OR(char symbol, int AddNum, int BitNum)
{

CSoftPLCDoc* pDoc = GetDoc();
bool state;

int index = AddNum*8 + BitNum;
switch (symbol) {

// Get the logical status of the address.
case ’X’:

state = pDoc−>XAddress[index];
break;

case ’Y’:
state = pDoc−>YAddress[index];
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break;
default:

break;
}
if(m stack[0] ‖ state)

m stack[0] = true;
else

m stack[0] = false;
}

h) ORN (OR NOT)

• This command is to reverse the value of the specific address, perform OR opera-
tion (logical sum) with the value of SR0, and save the result on SR0.

• Program structure.

- Ladder diagram

- Coding sheet and operation result

void CPLCStack::ORN(char symbol, int AddNum, int BitNum)
{

CSoftPLCDoc* pDoc = GetDoc();
bool state;

int index = AddNum*8 + BitNum;
switch (symbol) {

// Get the logical status of the address.
case ’X’:

state = pDoc−>XAddress[index];
break;

case ’Y’:
state = pDoc−>YAddress[index];
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break;
default:

break;
}
if(m stack[0] && !state)

m stack[0] = true;
else

m stack[0] = false;
}

i) RDS (READ STACK)

• This command is to shift the values of stack register to left bit and set the value
of the specific address in SR0.

• Program structure

- Ladder diagram

- Coding sheet and operation result

void CPLCStack::RDS(char symbol, int AddNum, int BitNum)
{

CSoftPLCDoc* pDoc = GetDoc();
bool state;
int index = AddNum*8 + BitNum;
switch (symbol) {

// Get the logical status of the address.
case ’X’:

state = pDoc−>XAddress[index];
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break;
case ’Y’:

state = pDoc−>YAddress[index];
break;

default:
break;

}
LShift(1);

m stack[0] = state;
}

j) RDNS (READ NOT STACK)

• This command is to shift the values of stack register to the left bit, reverse the
value of the specific address, and set the result on SR0.

• Program structure

- Ladder diagram

- Coding sheet and operation result
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void CPLCStack::RDNS(char symbol, int AddNum, int BitNum)
{

CSoftPLCDoc* pDoc = GetDoc();
bool state;
int index = AddNum*8 + BitNum;
switch (symbol) {

// Get the logical status of the address.
case ’X’:

state = pDoc−>XAddress[index];
break;

case ’Y’:
state = pDoc−>YAddress[index];
break;

default:
break;

}
LShift(1);

m stack[0] = !state;
}

k) ANDS (AND STACK)

• This command is to execute the AND operation (logical product) between the
values of SR0 and SR1 and shift all the values of the stack register to the right.

• Program structure

- Ladder diagram

- Coding sheet and operation result
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void CPLCStack::ANDS(char symbol, int AddNum, int BitNum)
{

if(m stack[1] && m stack[0])
m stack[1] = true;

else
m stack[1] = false;
RShift(1);

}

l) ORS (OR STACK)

• This command carries out the logical summation of SR0 and SR1 and sets the
result to SR1. It also shifts the value stack register one place to the right.

• Program structure

- Ladder diagram

- Coding sheet and operation result
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void CPLCStack::ORS(char symbol, int AddNum, int BitNum)
{

if(m stack[1] ‖ m stack[0])
m stack[1] = true;

else
m stack[1] = false;
RShift(1);

}

As mentioned above, the PLC executor performs the bit operations by using stack
registers and, therefore, the execution time is very short. In general, it takes several
tens of milliseconds to execute a PLC program with hundreds of lines. Depending
on the performance of the PLC processor, the time for execution can be even shorter.

7.8 Summary

A PLC system consists of a programming tool that is used for editing and loading a
PLC program, Input unit, Output unit, processor unit, memories, and auxiliary units.
AC and DC can be used for the input signal and output signal of a PLC system.
Various inputs and outputs, such as On/Off signals and timers/counters, can be used.

Textual language such as mnemonic and graphical languages such as the ladder
diagram are used as PLC programming languages. Each programming language has
a different structure and command list depending on PLC makers. This makes it im-
possible to exchange PLC programs between different systems. In order to overcome
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this problem, IEC1131, the international standard for PLC systems, was established.
The programming languages specified in IEC1131-3 have come to be widely used.

To satisfy the openness and compatibility of PLC systems, hardware-based PLC
systems have come to be replaced by software-based PLC, the so-called Soft PLC
system. A Soft PLC system is regarded as a software-oriented PLC system that is
based on PC hardware.

The behavior of the executor, being the key module of PLC system, is as follows.
First, the PLC processor reads the input contacts and saves the values in the appro-
priate input memory. Next, the PLC processor executes the operation and stores the
operation result in the output memory. Finally, the PLC processor sends the values
from the output memory to the output module. Consequently, the PLC executor plays
the role of performing bit operations based on the data in input memory according to
the PLC program and saving the result in the output memory.



Chapter 8
Man–Machine Interface

The Man–Machine Interface (MMI) provides the interface that enables a user to op-
erate a machine tool, edit a part program, perform the part program, set the parame-
ters, and transmit data. In this chapter, the function and components of the MMI will
be addressed, and programming methods such as CAPS (Conversational Automatic
Programming System) will be described. In addition, for designing CAPS, the main
functions and components of CAPS will be described.

8.1 MMI Function

In order for a user to operate a machine effectively and to use the function of the
machine optimally, it is necessary to design the operation panel for usability accord-
ing to the machine–tool characteristics. In other words, an operation panel should
be designed from the point of view of ergonomics, operation error prevention, key
grouping and key allocation for specific machine tools with regard to user conve-
nience. Figure 8.1 shows a typical operation panel and, in general, the operation
panel can be divided into four areas.

8.1.1 Area for Status Display

This area displays the machine status and NC parameters. It provides the graphi-
cal user interface (GUI) for interaction between the CNC and the user. Figure 8.2
shows a typical display of this area and the functions related to the numbers shown
in Fig. 8.2 are as follows.

1. Machining information: Displaying information related to the current machine
status including the coordinates of machine tools, current part program, cutting
tools and machine parameters.

271
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Status display area Data input area

Machine operation area MPG operation area

Fig. 8.1 Typical operation panel

2. Operation Mode: Displaying the operation modes of machine tools, such as zero
position return mode, JOG mode, Automatic mode and MDI mode.

3. Program name: Displaying the name of the program that is currently loaded in
the memory for machining.

4. Alarm window: Displaying the warning and alarm messages.
5. Key input window: Displaying the strings that are typed by a user.
6. Window for displaying user interface relevant to operation mode and function:

• Machining status (POS): operation status such as axis position, spindle speed,
feedrate, modal G-codes, and tool number is displayed by this function.

• Program (PROG): the GUI for editing a part program, managing the program
folders, graphical simulation, and CAPS is provided by this function.

• Tool management: the GUI for managing tool compensation, tool life, and tool
offset is provided by this function.

• Parameter and system: the GUI for managing the NC parameters, system pa-
rameters for servo and spindle is provided.

• Auxiliary application: the GUI for monitoring PLC, displaying alarms, per-
forming DNC, and compensating pitch error is provided.
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7. Function keys: these keys are horizontally placed in the bottom or vertically on the
right-hand side of the display and are mapped to the particular functions. There-
fore, to effectively design the menu structure, it is important to classify the func-
tions into the appropriate group and enable the necessary keys to be displayed in
one display. It is necessary to consider that the number of hierarchical layers in-
creases if CNC functions are grouped and are designed as a hierarchical structure.
Therefore, if the user wants to select a particular menu at the bottom of the hier-
archical structure, the user has to select a sequence of menus from the top menu
to the bottom menu. Also, the user has to remember the hierarchical structure and
the menus located in each layer. This problem makes the user interface inefficient.

To overcome this problem, it is necessary to design a ring menu structure of menu
trees where, by selecting the displayed menu tree, the user can carry out the de-
sired task from the function keys displayed on one screen as much as possible
and each function keys is connected with the various modes. In this type of menu
structure it is not necessary to remember the menu structure. However, the menu
structure may be inconsistent and many function keys may be required.

8.1.2 Area for Data Input

As this area is the keyboard for inputting user data to the CNC system, it consists of
alphanumerical input buttons and hot keys for executing the functions of CNC.

8.1.3 Area for MPG Handling

This area consists of the MPG (Manual Pulse Generator), the MPG handle ON/OFF
switch and the feed ratio selection key that are used for the user to move each servo
axis manually. In addition, the Chuck CLAMP/UNCLAMP key for manually loading
and unloading tools to the spindle and the emergency stop button are located in this
area.

8.1.4 Area for Machine Operation

This area consists of many kinds of switch and lamp that provide various functions
as follows.

1. Mode selection switch: for selecting Auto mode, MDI mode, Teach-In mode, Re-
turn mode, JOG mode, Handle mode, Incremental Moving mode, and Rapid Mov-
ing mode.
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Current Coordinate
X   123.999
Y   246.000
Z   000.000
U   000.000
W   -40.100

Feed
  Actual    19.99 mm/min
  Set          20.00 mm/min
  Override  100%
Spindle
  Actual    3000.02 RPM
  Set         6000.00 RPM
  Override   50%

Machine Coordinate
  X  111.000
  Y  000.000
  Z  120.000
  U 000.000
 W 110.100

Distance to Go
  X  3.999
  Y  6.000
  Z  0.000
  U 0.000

    W 10.100

Tool#                7
Work Counter   125
Running Time   08:35

Input Feed Rate?

Machine

Program

Parameter

Tool

Service

PG EDIT Test Save Light

Machine Auto Prog. #1 Emergency Stop ON

(1) (2) (3) (4)

(5) (7) (6)

Fig. 8.2 Typical machine status and NC parameters display area

2. Rapid Override button: by using this button, rapid feed can be adjusted in scale to
10%, 50%, and 100%.

3. Feed override switch: by using this switch, the commanded feedrate can be ad-
justed from 10% to 150%.

4. Spindle speed override switch: using this switch, the commanded spindle speed
can be adjusted from 50% to 150%.

5. Spindle handling buttons: these buttons consist of the spindle start button, the
spindle stop button, rotation direction selection button, and the spindle orientation
button, inverse. These buttons are used in MDI mode.

6. Cycle Start button: This button is used for starting the auto-execution or resuming
the execution of a part program during feed hold state.

7. Feed Hold button: This button is used for temporarily stopping the axis move-
ment in automatic machining. When the button is pushed, the spindle continues
to rotate. If any axis of the machine tool is moving, that axis is stopped after
deceleration.
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8. Single Block Button: Single block execution means that in auto mode or MDI
mode, the execution of a part program is stopped after the execution of one block
has been completed and the next block begins only after the Cycle Start button has
been pushed. The single block button turns on or off single block execution mode.
If this button is ON during the execution of a part program, the CNC system goes
into the idle state after completing the executed block. If this button is OFF, the
remaining blocks are executed.

9. Zero return button: This button is used for making each axis return to the zero po-
sition. All axes can be returned to the zero position simultaneously. Feed override
is validated during zero return.

10. Emergency Stop button: This button is used for stopping the machine in an abnor-
mal state as soon as possible.

11. Part program modification Lock/Unlock key: This key is used for preventing an
unauthorized user from modifying, editing, or deleting part programs or prevent-
ing unintended modification of a part program due to incorrect operation by a
user.

12. Door Interlock key: In the case that this key is ON, if a door is opened while the
spindle is rotating, the emergency stop is invoked.

13. In addition, there is an OT (Over Travel) cancel button that temporarily cancels
safety mode when an axis moves beyond its set limit, a power switch, and a reset
button that initializes the CNC system.

8.2 Structure of the MMI System

The ultimate design goal for the MMI system is to provide ease of operation and
various functions for users. Following this trend, MMI has advanced to become PC-
based MMI that is operated by an individual processor and allows various functions
and advanced functions to be invoked from a single panel whereas traditional MMI
only allows simple operations.

PC-based MMI allows the usage of a graphical user interface that replaces the
earlier simple textual user interface. It also allows a CAM system to be used on
the CNC system itself and enables the CNC system to communicate with external
equipment. Furthermore, the user can use the various functions normally found on
a PC. In recent times, the majority of PC-based MMIs use Windows OS from the
Microsoft Corporation as an operating system, which makes third-party development
and deployment of MMI applications relatively easy. Accordingly, the MMI system
of PC-based systems are developed continuously to meet various user requirements.
The details of PC-based systems will be addressed in Chapter 9.

As shown in Fig. 8.3, the structure of the MMI software can be divided into three
layers; Application layer, Kernel layer, and OS layer.

The application layer is composed of the applications with which the user inter-
acts. The following MMI functions belong in this layer and each application is made
in stand-alone executable file format.
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1. Machine Manager: This program monitors the machine status and displays the
real-time tool path during machining in Auto mode or MDI operation mode.

2. Parameter Manager: The user can edit NC parameters and system parameters
using this program.

3. Program Manager: This program provides the functions for editing G-code pro-
grams and managing part programs such as saving and deleting.

4. Tool Manager: This program is used for editing and managing the tool informa-
tion, such as tool offset, tool life, and tool geometry.

5. Utility: Service functions of the CNC system such as alarm history management,
PLC monitoring, DNC, and communication with external systems are provided.

The functions provided in the application layer may be added, deleted, or replaced
according to the user’s needs. Therefore, in order to make this possible, openness
should be considered when the kernel layer is designed.

As the kernel layer is the core of the MMI software, it plays the role of linking
the applications and the NCK. It sets environment variables during system boot-up,
links application modules with key input and alarm/help file, and transfers files and
parameters. The binary modules for executing the following functions are placed in
the kernel layer. The modules are automatically linked with the applications while
the CNC system is running.

1. System boot-up: This function initializes the variables of the operating system
and system boot manager for setting the language type of MS Windows, machine
parameters, etc.
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2. Communications interface: This carries out communication and data exchange
with the NCK and PLC. It manages the services for sending the data required by
the user to the MMI for display.

3. File management: This provides the services for managing folders and files, such
as copying, saving, deleting, and changing part programs and PLC programs.

4. Alarm: This displays alarm and error messages from the machine, PLC, and MMC
in the alarm window. It manages the history and displays the help information.

5. Key input: This transmits the key input from soft keys, keyboard, and dialog boxes
to the applications and the CNC system.

6. Screen Display: This handles the horizontal or vertical function key window that
is shared by all applications and connects the function keys with particular appli-
cations. In addition, it provides the interface for handling MMI soft keys.

7. Task manager: This executes the programs registered in the application layer and
provides the function for calling and switching them. It registers the applications
as a program list in a text file format and executes the applications sequentially
when the task manager begins. When the task manager is terminated, it termi-
nates the applications in reverse order. The basic functions can be summarized as
follows.

• Registering/terminating applications
• Defining the execution sequence for applications and initializing them while

booting up.
• Switching applications while they are executing.
• Monitoring system resources.

An MMI system based on PC hardware typically uses a PC operating system
as OS. MS Windows or Linux have both been used (recently, Windows embedded
XP and Windows CE have become widely used) However, these operating systems
cannot provide the real-time capabilities required by a CNC system. Generally, an
MMI system requires a non-real-time environment, whereas an NCK system needs a
real-time environment. Therefore, when the overall architecture of the CNC system is
designed, techniques to overcome the non-real-time capabilities of the PC operating
system must be considered. One simple solution is to use two operating systems,
using a PC operating system (non-real-time OS) and a hard real time OS for the
MMI and NCK systems, respectively. In this case, it is very important to regard the
execution of the MMI system as one specific task in the NCK system.

In the MMI, various applications are executed based on the kernel and the user
interface for editing a part program, which is one of the key applications in MMI.
In general, the machine tool operator spends a lot of time learning how to generate
a part program. So, from the MMI designer’s point of view, the MMI should be
designed for the MMI to be able to provide the most efficient method for generating a
part program. In the following sections, the advantages and disadvantages of various
programming methods will be discussed. The design of an efficient programming
system will also be addressed.
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8.3 CNC Programming

In order to machine the part in a drawing by using CNC machine tools, it is necessary
to generate a series of instructions for activating those CNC machine tools. This task
is called CNC programming.

8.3.1 The Sequence of Part Programming

Roughly, CNC programming is composed of the generation of a process plan from
a part drawing and the generation of the part program. The detailed processes are as
follows.

1. To analyze the part drawing.
2. To decide on the removal volume and to select the machine.
3. To decide on the jig and chuck.
4. To decide on the setups, machining sequences, cut start points, cut depths for

roughing and finishing allowance.
5. To select tools and tool holders and to decide on the tool position.
6. To decide on the technology data such as spindle speed, feedrate, and coolant

on/off.
7. To generate the part program (including post-processing).
8. To verify the part program.
9. To machine.

The tasks from stage 1 to stage 6 are included in the preparation stage where
the part drawing is analyzed and the machining strategy is decided for creating a
part program. These tasks are called “process planning”. Process planning is done
by a programmer or a machine operator. Extensive knowledge about the machine
tools, CNC equipment, tools, and cutting theory is required to generate fine process
planning. However, in practice it is very difficult to find experts for these. There-
fore, many studies on CAPP (Computer Aided Process Planning) for automatically
executing process planning have been carried out.

After process planning, a part program (stage 7) for controlling CNC machine
tools is generated. The generation of this part program can be done by the manual
programming method or the automatic programming method. In the manual pro-
gramming method, a programmer directly edits the part program in CNC-readable
EIA/ISO code. In the Automatic programming method, a programmer edits the pro-
gram in terms of graphical symbols or a high-level language via a computer. The
CNC system then converts this program into machine-readable instructions and exe-
cutes those instructions.

The automatic programming method can be classified into two types in terms
of the editing method; the first is the language-type programming method where a
high-level language is used for programming. The second type is the conversational
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programming method where a programmer creates the program as he/she converses
with the CNC system using graphical symbols. The various programming methods
are depicted in Fig. 8.4. The key characteristics of each programming method will
be described in detail in the following sections.

After completing the part program, the part program is verified by using simula-
tion (stage 8). Through the simulation, errors can be detected and corrected. Also, if
necessary, test cutting is carried out before real machining begins.
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Post-processor

DNC
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Fig. 8.4 Programming methods

8.3.2 Manual Part Programming

CNC equipment provides various instructions for the preparation functions, feed
functions, spindle functions, tool functions, auxiliary functions, and other functions
to meet the EIA/ISO standards. Direct editing of the program with the instructions
(codes) provided by the CNC equipment is called manual programming. The part
program generated by manual programming method can be executed not only within
CNC equipment but also outside the CNC equipment.

Due to the differences in terms of function and design concept between CNC mak-
ers, each CNC system has a slightly different programming instruction set compared
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with other CNC systems, although the EIA/ISO standard for programming instruc-
tions exists. This makes it difficult for a programmer to use a variety of CNC sys-
tems. Also, for the manual programming method, the efficiency and productivity of
the part program depends on the programmer’s ability. Therefore, knowledge about
process planning, machining theory, G-code, and complex computations for tool-
path generation are necessary for a good programmer and a long training time and
much effort are also required. Further, because of the lack of compatibility between
programming instructions (G-code), a programmer has to learn new programming
instructions if the CNC system is changed. In addition, it is almost impossible to cre-
ate a part program for machining 2.5D or 3D shape using the manual programming
method. However, in the case of simple machining and repeated machining tasks,
the manual programming method makes quick programming possible. It also makes
it possible to generate a part program quickly by modifying an existing program and
using macro programming. Moreover, depending on the programmer’s ability, it is
possible to generate a part program for unusual and specific shapes.

The automatic programming method, where a computer is used, was developed
to overcome the above-mentioned problems with the manual programming method.
The automatic programming method makes it easy to machine parts with compli-
cated or 3D shapes. It also makes it possible to generate the large part programs in a
short time. In addition, with computer simulation, it makes it possible to detect and
modify machining errors before actual machining begins.

8.3.3 Automatic Part Programming

The automatic programming method can be classified into the language-type pro-
gramming method and the conversational programming method. In the language-
type programming method, the machining sequence, part shape, and tools are de-
fined in a language that can be understood by humans. The human-understandable
language is then converted into a series of CNC-understandable instructions. In the
conversational programming method, the programmer inputs the data for the part
shape interactively using a GUI (Graphical User Interface), selects machining se-
quences, and inputs the technology data for the machining operation. Finally, the
CNC system generates the part program based on the programmer’s input. Typically
conversational programming can be carried out by an external CAM system and a
symbolic conversational system that is located either inside the CNC system or in
the external computer. In this book, the implementation of symbolic conversational
programming systems embedded in the CNC will be addressed in detail.

Language-type programming is the method in which a programmer edits a part pro-
gram using language-type instructions that the user can easily understand. As the

8.3.3.1 Language-type Programming
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manual programming method is similar to assembly language programming, so the
language-type programming is similar to programming in BASIC or FORTRAN. For
language-type programming, APT, EXAPT, FAPT, KAPT, and COMPACT II have
been widely used.

• APT (Automatically Programmed Tool)
APT, which was developed in the USA in the 1960s, is the most famous system
for the language-type programming tool and has the greatest number of func-
tions. APT allows representation of various geometries, such as line, circle, el-
lipse, sphere, cylinder, cone, tabulated cylinder, and general two-dimensional sur-
faces. By using APT, it is possible to generate programs for 3-axis, 4-axis, and
5-axis machining, including rotation control for spindles and machining tables.
Figure 8.5 shows the structure of a part program in APT. The part program con-
sists basically of four parts; 1) the shape definition part where the shape for the
machined part is specified, 2) the motion definition part where the tool paths are
specified, 3) the post processor part where cutting conditions and the character-
istics of the CNC system are specified, and 4) the Auxiliary part where auxiliary
data such as tool size, workpiece number, and so on is specified.

• EXAPT
EXAPT was developed in Germany. There are three kinds of EXAPT; EXAPT
I for position control and linear machining, EXAPT II for turning, and EXAPT
III for milling such as two-dimensional contour machining and one-Dimensional
linear machining. EXAPT is very similar to APT but without workshop technol-
ogy. EXAPT decides automatically how many tools are needed by considering the
material of the workpiece, required surface roughness, and the shape of the hole
specified by the programmer. It calculates automatically the spindle speed and
feedrate. In EXAPT II, with user specification of the shape of the blank material
and machined part, all machining operations including the machining allowances
are generated automatically. On the other hand, it is necessary to register the pre-
specified data because appropriate spindle speed, feedrate, and cutting depth can
be varied according to the machine and tools. Because EXAPT generates automat-
ically not only the tool path but also machining operations and cutting conditions,
it is easier to use than APT. However, the kinds of machineable part shape that
can be handled are more limited than with APT.

• FAPT
FAPT was developed by FANUC and is similar to APT. FAPT can be used in
carry-on exclusive programming equipment. By using particular programming
software such as FAPT Turn, FAPT Mill, and FAPT DIE-II, part programs for
turning, milling, and die and mold machining can be generated easily. The FAPT
Turn/Mill system has the following characteristics.
FAPT turn is a software library for turning. For part programming, the coordinate
system of the rotation axis of the workpiece is defined as the Z-axis and the radius
direction of the workpiece is defined as the X-axis. It is possible to program based
on both diameter and radius values of the X-axis. FAPT turn provides 1) rough-
ing, 2) finishing, 3) grooving, and 4) threading as metal-removal operations. The
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Fig. 8.5 APT program structure
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tool nose compensation such as leaving finish allowance based on the machining
tolerance and tool radius is possible. In addition, the tool path can be displayed
graphically.
FAPT Mill is the automatic programming system for generating a part program
for milling. It supports drilling, 2.5D machining of shapes made from lines and
arcs, 3D machining of shapes made from spheres, cylinders, cones, and slanted
planes. Free-form curves made using discrete points and pattern drilling, which
is a repetition along a pattern element such as a line, arc, or grid, are possible.
During simulation, the tool path can be displayed on the XY plane, YZ plane, ZX
plane, or on an arbitrary plane projected from an arbitrary direction. In FAPT
Mill:

1. it is possible to define a variety of geometries based on point, line, arc, slant
plane, cylinder, cone, and sphere.

2. it is not necessary to define extra geometries for generating desired shapes.
3. it is possible to specify tool movement with a descriptive geometry name.
4. Tool radius compensation (left/right) and subroutine calls are possible.
5. variables and a variety of mathematical functions, such as the four arithmetical

operations and trigonometric functions, can be used.

Apart from these, other programming languages, such as COMPACT-II, have
been developed. However, the basic concept of these is similar to that of APT.

8.3.3.2 Conversational Programming

In order to carry out manual programming or language-type programming, a pro-
grammer must know the program instructions, and this makes the generation of part
programs difficult. To overcome this problem, creation of part programs without
knowledge of detailed program instructions needs to be possible. Due to this require-
ment, conversational automatic programming systems were developed that enable a
programmer to generate tool paths by selecting machining features and operations as
well as inputting data and following the system’s instructions. In general, the conver-
sational programming system category includes systems executed outside the CNC
system in order to generate part programs for two-dimensional contours and three-
dimensional free-form surfaces, so-called CAM (Computer-Aided Manufacturing).
There are various examples of this type of system, such as CATIA, MasterCAM,
EdgeCAM, so on.

As the above-mentioned conversational programming system is an offline sys-
tem, a part program is generated on an external computer rather than on the CNC
system. Because of this, the part program has to be transferred to the CNC system
via a DNC system. Therefore, the creator of the part program and the operator of
the part program can be different and so, in practice, it can be difficult to apply data
optimization to the part program. In addition, in the case of simple machining, the
usage of a CAM system reduces productivity. Accordingly, with the improvement in
CPU and graphic performance, the symbolic conversational programming method,
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which enables programmers (including novices) to generate part programs quickly
and accurately on the shop floor in order to overcome the disadvantages of CAM
systems, has been widely used.

In general, the symbolic conversational programming method is called WOP
(Workshop Oriented Programming) or SOP (Shopfloor Oriented Programming). As
shown in Table 8.1, this has different characteristics compared with other program-
ming methods. It has been widely used on the shop floor and has a good effect on
productivity. In this text book, the design and development of Shopfloor Oriented
Programming systems embedded in CNC systems and used on the shopfloor will be
addressed in detail.

Table 8.1 Comparison between programming methods

Advantage Disadvantage
Easy to apply to simple oper- Full knowledge of

EIA/ ations such as tapping, drilling G-code required.
ISO Basic function of CNC Knowledge of geometry/

equipment. mathematics needed for
calculating toolpaths.

Possible to specify compli- Very expensive and
CAM cated shape. requires expert.

Possible to generate programs Impossible to feed back
for various machines with one programs optimized on
package. shopfloor.
Experienced person can use Program can be used only

Symbolic easily. on a particular machine.
Easy to create part program. In order to apply program
Possible to feed back program to different machine,
optimized on shopfloor. re-programming required.

Programming for compli-
cated parts is restricted.

The shopfloor programming system in CNC can be widely used for generating
a part program on a variety of machine tools. In particular, when this programming
system is applied to machines that produce parts with simple 2D, 2.5D, and primitive
3D shapes, it is possible to improve productivity and flexibility.

Considering that an operator edits the part program at the front of a machine, off-
line CAM systems are more appropriate than shopfloor programming system in the
case of the milling, for which it takes a long time to specify the part shape. How-
ever, shopfloor programming systems can be applied to wire-EDM or turning where
the part shape is simple. In particular, the usefulness of the shopfloor programming
system can be maximized when it is applied to turning machines with milling func-
tions. Figure 8.6a shows how a turning machine with milling function can machine
a milling feature on the end of cylinder. Figure 8.6b shows how a turning machine
can generate a groove on the surface of a cylinder. To carry out the machining shown
in Fig. 8.6 it is necessary to make a part program whereby the rotation of the spindle
and the movement of the turret or tool post are controlled simultaneously. In practice,
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even experts have difficulty in creating part programs for turn-mill machining man-
ually. However, if a programmer uses the shop floor programming system, he/she
can generate a part program by merely entering the feature geometry data and cut-
ting depth for the machining shown in Fig. 8.6a and by merely entering the data of
the groove shape and cutting depth for the machining shown in Fig. 8.6b. Thereby,
the productivity of novice operators can be drastically increased by using shopfloor
programming systems.

Fig. 8.6 Turning with milling

8.3.3.3 CAM Systems and Shopfloor Programming

Recently, with the use of PCs as MMI hardware, attempts have been made to embed
PC-based CAM systems in the MMI and to replace shopfloor programming systems
with online CAM systems. Because the ultimate goal is to edit the part program
easily, they play similar roles. Each system consists of a graphical user interface,
initialization module, contour module for specifying part profiles, machining cycle
module for specifying machining operations and generating toolpaths, tool module
for managing tools, simulation module for verifying the toolpath, and utility module
for managing the part programs, as shown in Fig. 8.7.

The CAM system and Shopfloor programming system have slight differences in
terms of function. The target machine of a shopfloor programming system is re-
stricted to one machine or to machines of a similar type, but CAM systems can be
applied to a variety of machines by providing a post-processing function. Therefore,
in the case of a CAM system, a variety of machining conditions have to be consid-
ered. However, because only machine-specific functions are considered in the case
of the shopfloor programming system, the function and architecture of the shopfloor
programming system can be simpler than those of the CAM system.

However, there are too many problems caused by the difference between the de-
sign concepts to use CAM systems designed for offline usage on a CNC system.
For example, a pointing device such as a mouse can be used for specifying the part
profile and inputting the data to the CAM system. However, in the shopfloor pro-
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Fig. 8.7 CAM system structure

gramming system, a pointing device cannot really be used and only limited buttons
are available. Also, because it is impossible for a user to edit a program at the front
panel of a machine for a long time, quick and easy programming methods to specify
part design and machining operations and enter key inputs are needed. In addition, it
is necessary that the data modified is, after simulation, directly incorporated into the
part program and saved.

Further, it is necessary to generate a machining cycle reflecting the parameters
specified in the CNC system and it is also necessary to prevent programming that is
outside the machine’s performance. Moreover, a way of helping a novice operator
to decide input data (operation sequences, removal volumes (features), tools, and
cutting conditions) or recommending input data values, is required.

Therefore, the shopfloor programming system must provide a variety of methods
to increase the program’s productivity by supporting the graphic user interface. The
basic modules of the shopfloor programming system have the following properties
and examples of modules are shown in Fig. 8.8.

1. Initialization module: In this module, the global variables, coordinate system (ab-
solute/incremental), programming unit (inch/metric or diameter/radius), spindle
data, feed unit (mm/rev or m/min), tool retract position, tool-retraction method,
workpiece material, and machine data are specified, (see Fig. 8.8a).
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2. Machining Cycle Module: The specific machining scheme for milling, turning,
and drilling is defined as one block. This block makes programming simple and
efficient. The block is called a module. The machining operations such as rough-
ing, finishing, drilling, slotting, and pocketing provide a variety of machining
strategies. It is important to minimize the data that a programmer should input
and select via the GUI during programming. This module is the core module of
the conversational programming system (see Fig. 8.8b).

3. Module for defining the part profile: This module is used for defining the part
shape. For this module, a different GUI is provided compared to that of a CAD
system. This module provides the conversational contour programming GUI that
consists of various graphic menus including line and arc geometries. In particular,
in the case of finishing, individual surface finishes can be specified for each profile
and feedrate can be computed automatically for each profile based on the surface
finish. Of course, in the case of threading, slotting, and drilling, except for con-
tour machining (profile machining), feature definition is carried out together with
specification of machining cycles. The important thing for contour programming
is that the dimensional data can be input easily without additional calculations
during specification of the part profile. In addition, chamfer and round should be
easily specified (see Fig. 8.8c).

4. Tool module: The tool module actually consists of two modules; the first is used
for attaching the tool to the turret or tool magazine and the second is used for se-
lecting the tool from the turret or tool magazine. One provides the GUI for spec-
ifying tool position, tool type, and tool geometry and the other provides the GUI
for selecting the appropriate tool from the turret or tool magazine. Cutting condi-
tions and spindle speed are automatically recommended by the system based on
the tool, workpiece material and tool geometry. When the tool has been selected,
a variety of data required for machining are automatically set using predefined
values. If modification is needed, the programmer can modify these individually
(see Fig. 8.8d).

5. Toolpath verification module: This module provides the functions for graphically
simulating the toolpath of the program that was generated based on the program-
mer’s input. By using this module, a programmer can verify the process from
blank material to the final shape. Moreover, because this module displays the ma-
chining time (cutting time and non-cutting time) it can be used for optimization
of the toolpath, (see Fig. 8.8e).

6. Utility module: this module provides the functions for copying, deleting, saving,
and moving part programs, tool data files, and tool path files. It provides a text
editor for modifying the file and moving, deleting, and editing operations for the
generated programs, (see Fig. 8.8f)

The above-mentioned system can be summarized as a system that enables an op-
erator to execute sequentially the steps of setting the program environment, setting
the tool, selecting the machining cycle, and verifying the toolpath. The system pro-
vides a variety of graphical user interfaces for easily specifying the machining cycle
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(f)(e)

(d)(c)

(b)(a)

Fig. 8.8 CAM function displays (Courtesy of Mazatrol)
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and machining feature, and generating a part program by interaction with the system
without needing to memorize the programming method.

In order to help an operator generate, verify, and modify a part program quickly,
CNC makers have developed and provided various shopfloor programming systems
that can be operated only on their own CNC systems. For example, Siemens pro-
vided the Blue print programming system, the Support cycle programming system,
and the WOP system. FANUC, Mazak, and Yasnac have provided the EZ-guide, the
Mazatrol conversational programming system, and the Compact programming sys-
tem, respectively.

These support various programming levels from low-level programming to high-
level programming including complicated part machining. In the following section,
using the Mazatrol system as an example, the characteristics of a shopfloor program-
ming system will be addressed.

8.4 Mazatrol Conversational System

The Mazatrol Conversational Programming System is designed to enable a program-
mer to generate a part program quickly and verify it without needing either a manual
or an assistant. It has been widely used in industry and provides various machining
cycles that include the machinist’s know-how. In addition, it provides a graphic inter-
face (Fig. 8.8b) to enable programming without detailed programming knowledge.

8.4.1 Turning Conversational System

The machining cycles in terms of the machining mode and cutting mode, the key
characteristic of the Mazatrol Turning Conversational Programming System, are
summarized as follows.

1. Feature Mode: This denotes the machining cycles that are provided in conversa-
tional programming system. In this system, twelve machining cycles are provided
as machining cycles, as shown in Fig. 8.9. As can be seen from the figure, the
twelve cycles are as follows:

• BAR: This denotes the operation for machining a cylindrical part by turning.
This cycle is used for rough machining of an arbitrary part.

• CPY: This is used for finish machining of a specified part with finishing al-
lowance.

• CNR: After finish and rough machining, an undercut area can be left due to the
tool’s shape. This cycle is used for machining the undercut area.

• EDG: This cycle is used for machining the end face of the cylindrical part.
• THR: This cycle is used for threading.
• GRV: This cycle is used for machining a groove with arbitrary shape.
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• MTR: This cycle is used for cutting in the part.
• DRL: This cycle is used for drilling a hole.
• TAP: This cycle is used for tapping.
• MNP: This is used for generating a part program in manual mode in order to

machine special features that are not included specifically in this list.
• MES: This is used for measuring the machined part on the machine after ma-

chining has been completed.
• M: This is used for setting M-codes for controlling the machine behavior other

than the servo motors.

1. BAR 2. CPY 3. CNR 4. EDG 5. THR 6. CRV 7. MTR 8. DRV

9. TAP 10. MNP 11. MES 12. M

(Manual) (Measur
ement)

(Auxili
ary)

Fig. 8.9 Machining cycles

2. Cutting Feature: After selecting the feature mode, the cutting method should be
decided. For example, the rough machining mode feature (i.e. BAR) should be fol-
lowed by inner contouring, outer contouring, facing, and back facing depending
on the machined region. Therefore, the Cutting Feature is restricted by the type
of Feature Mode. The relationship between Feature Mode and Cutting Feature
is shown in Fig. 8.10. When BAR, CPY, CNR, EDG, THR, or GRV are selected,
eight kinds of Mode Feature can be selected. In the case of MTR, only OUT (outer
contouring) and IN (inner contouring) can be selected. In addition, because DRL
and TAP can be applied in the face, selection of Mode Feature is not needed.

3. Machining Strategy: In order to execute the operation selected from Mode Fea-
ture, it is necessary to decide on the machining strategy. The machining strategies
that can be applied according to the Feature Mode are shown in Fig. 8.11. For
BAR and CNR, the tool retraction method has to be selected. When THR is se-
lected, six kinds of machining strategy can be selected. In the case of GRV, vari-
ous groove shapes can be selected. Since the conversational programming system
guides the choice of appropriate strategies depending on the feature and opera-
tion, even non-expert programmers can select the appropriate machining strategy.

4. Tool and cutting condition: After Feature Mode, Cutting Feature, and machining
strategy have been specified, it is necessary to select the appropriate tool and de-
cide on the cutting conditions. The tool is selected from the tool database that
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[2]. Mode Feature: MTR

[1]. Mode Feature: BAR, CPY, CNR, EDG, THR, GRV

[3]. Mode Featuring: DRL, TAP-Set as “FCE”

1. OUT 2. [OUT] 3. IN 4. [IN] 5. FCE 6. [FCE] 7. BAK 8. [BAK]

1. OUT 2. IN

Fig. 8.10 Relationship between Feature Mode and Cutting Feature

   [1] Mode: BAR, CNR

   [2] Mode: THR

   [3] Mode: GVR

   [4] Mode: DRL

   [5] Mode: TAP
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1. #0 2. #1 3. #2

1. #0 2. #1 3. #2

1. #0 2. #1 3. #2

4. [#0] 5. [#1] 6. [#2]
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Fig. 8.11 Machining strategies to be applied according to Feature Mode
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is pre-specified based on the tools loaded onto the machine. The cutting condi-
tions can be recommended automatically by the system according to the tool and
workpiece material or can be input directly by the programmer.

5. Machining Geometry: The last step to input the feature data is to specify the ma-
chining geometry. The geometry of the feature can be made up from lines, slanted
lines, convex arcs, concave arcs, and circle centers, see Fig. 8.12. The programmer
selects the geometric elements that compose the feature and inputs their positions
to define them fully. For each segment, surface roughness can be specified. If the
programmer does not specify this, a default value, defined by a global variable, is
set.

1. LIN 2. TPR 3. 4. 5. 
CTR

(Center)

Fig. 8.12 Feature geometric elements

8.4.2 Programming Procedure

The programming procedure in the Mazatrol system is as shown in Fig. 8.13. The
procedure is composed of three parts; the first is the header part where the part pro-
gram number is specified and global data in the initialization module are defined.
The second is the body part where a variety of information for machining, such as
feature data, machining operation data, and cutting condition data, are defined. The
last is the end part where the data for the task to be carried out for completing the
program are specified.

In the header part, the material, diameter, and length of the workpiece, maximum
spindle speed, finish allowance, and surface finish are specified as global data.

In the body part, the data for defining machining features are specified. First, the
machining mode (e.g., BAR, CPY, DRL, and TAP), called “Mode Feature” in the
Mazatrol system, is selected and the machining part (in Mazatrol called “cutting
feature”) relevant to the selected Mode Feature (e.g., internal, external, and face)
is selected. After that, the machining strategic data are specified and the tool and
cutting conditions are selected. The cutting conditions can be selected automatically
from a pre-specified database or selected manually by the operator. Finally, if it is
necessary to specify the part profile depending on the selected Mode Feature (for
example, bar machining, copy machining, and grooving machining), the shapes of
the blank material and finished part are specified by inputting segment features.

The end part can be used optionally. In this part, the tasks that must be executed
before completing the part program are specified. For example, it is possible to spec-
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ify whether the number of a finished part is counted or the M-code for activating
automation equipment is called. In addition, it can be optionally specified how of-
ten the part program is repeated or what program will be invoked for subsequent
execution.

   Workpice Program Number Input

Material Data Stock Boundary Spindle                  Max Tolerance Clearnace
   Global Data Input

   Feature Data Input

 Mode Select

 Mode Feature
  :BAR, CPY, CNR, EDG

 Cutting Feature
  :OUT, OUT, IN, IN, FCE

 Machining Strategy

 Starting Point Coordinate

 Cutting Condition (Manual/Automatic input)

  Tool Number Setting

   Segment Feature Input
  Segment Feature Select

  Coordinate Value Input

  Requiring Roughness

   Operation Data InputEnd

Body

Header

BAR, CNR, THR CPY EDG MTR

GRV, DRL, TAP

Fig. 8.13 Mazatrol programming procedure
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8.5 Conversational Programming System Design

As the shapes of parts have become more complex and their accuracy has increased,
so has part programming become more difficult. At the same time, on the shopfloor,
the number of expert programmers has decreased. Because of this, a conversational
programming system has become an essential function of an advanced CNC sys-
tem. This conversational programming system must provide not only basic functions
provided by the CNC user interface but also intelligent machining cycles based on
a graphical user interface, strategy and cutting condition database based on expert
know-how, tool path verification functions, and a variety of utilities.

A conversational programming system is designed as a system that:

1. can be used even by an inexperienced operator,
2. can generate a part program quickly with minimal key input,
3. can verify the generated part program in a short time,
4. can introduce the modified information easily into the generated part program,

and
5. can be operated on the CNC system on the shopfloor.

8.5.1 Main Sequence for Design

The procedure for creating a part program in a conversational programming system
can be summarized as shown in Fig. 8.14.

1. Start the conversational programming system by selecting the programming key
in the MMI.

2. Set the initial data (global data) following the screen indications generated by the
Conversational Programming System.

3. Select the particular operation and input the data via the GUI (graphical user in-
terface) relevant to the selected operation. The shape of a part, machining strategy,
tool, and cutting condition are given as input data.

4. After specifying all operations, generate the part program in standard G-Code or
the manufacturer’s own code by selecting the program generation key in the MMI.

5. Check the tool path or the finished part via the simulator.
6. If the verification result is not satisfactory, select the modification key and modify

the data of the unsatisfactory operation.

Through the above-mentioned programming procedure, an operator inputs the
data in steps 2 and 3 (these are represented by the gray boxes in Fig. 8.14) and
the others are executed by the conversational program system. Editing the data in a
parameter database is possible during programming and before programming. This
database has the default values for the parameters for machining strategy, tool, and
cutting conditions. In particular, the important thing is that the tool offset, which is
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measured on a machine, is managed by the database that is connected to the con-
versational programming system. The value in the parameter database is used during
selection of the machining feature. Figure 8.14 depicts the main components of the
conversational programming system for turning. In the case of a milling system, the
major components are the same and only the details about machining features, tool
databases, and machining strategies are different.

Initializing

Start

Unit(Metric/Inch), Raw, Material,
Dim.Nnit(Radius/Dia.), Roughness
Round, Workpiece Size, Max, RPM

Parameter Database

Cutting Strategy Parameters
Tool Geometry/Cutting Condition Data
Tool Offset Management

Machining Cycle Feature Contour Feature

Mill Grove Tread Drill ... Cutoff

Line segment
Arc segment
Chamfer/Round
Thread Shape
Groove Shape
Standard Geometry
Constructed Geometry

Retraction angle
Thread cutting angle
Safety distance
Approach method
Overlapping amount
Pocket Path
Dwell time

Feed
RPM
Depth of Cut
Tolerance
Roughness
Tool number
Offset number

Strategy Feature Tool Feature

Machining
Feature

Cutting Boundary
Boolean Algebra
between Raw &
part Shape
Min. Air-cut

Process Order
Hole Machining Order
Min. Tool Change/
   Min. Moving Distance
Order by tool/by process

Collision Detection
Check Tool Angle
Check Holder Dimension
Check Workpiece Shape
Check chuck / Clamp

Gouge Checking

Check toolpath
check tool angle

G-Code / Internal Code Generation

Toolpath Simulation, 3D Solid Dynamic Simulation, Machining Time Estimation,
Code Edit on Simulation, Cutting Force Verification, Surface Roughness Estimation

Automatic
Process
Planning

Program
Verification

Fig. 8.14 Typical operation steps

Therefore, as mentioned above, the following are key points for designing a con-
versational programming system with an easy-to-use user interface.

1. For adequate design of the machining cycle feature that meets the machining char-
acteristics of the machine, key functions are needed for minimizing user input by
automatic recommendation of machining operations, helping non-experts to edit
a program by automatic recommendation of cutting conditions, generation of the
toolpath without tool interference, overcut, undercut, and aircut, and determining
the operation sequence that minimizes the cutting time and tool change.

2. A unique method for specifying the part shape is needed. In order for an operator
to generate a part program quickly at the machine, a simple and easy way of
specifying the part shape is needed instead of an offline CAD system.
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3. In addition, for realistic simulation, 3D graphics functions are needed. However,
because this subject is outside the scope of this book, details of this are omitted.

In this book, the key design factors for a shopfloor conversational programming
system will be summarized in terms of a milling system. The implementation of the
machining cycle, which generates the toolpath from the machining feature, will also
be addressed.

8.5.2 Key Design Factors

The initial setup, machining operation cycle, part profile drawing, tool management,
utility, and operation management should be defined as key functions for a conver-
sational programming system.

8.5.2.1 Initial Setup

In the initial setup module, not only global data that is used by the CNC system but
also the coordinate system (absolute/incremental), programming units (inch/metric,
diameter/radius), spindle data, feed unit (mm/rev, m/min), tool retract point, tool re-
tract strategy, workpiece material and machine specification data are defined in this
module. As shown in Fig. 8.15, workpiece geometry, start Z-point, Z safety plane,
work coordinates, and clamp design are defined as well. The workpiece material is
used together with a tool database for calculating the cutting conditions automat-
ically. The workpiece geometry is used for displaying the initial material on the
solid simulator. The working coordinates are used as the reference coordinates during
real machining. Clamp design is used by the simulator for detecting tool collisions.
Therefore, in order to use the advanced functions of the conversational programming
system efficiently, it is essential to carry out an initial setup before specifying the
machining operation cycle.

8.5.2.2 Machining Operation Cycle

Initially, how a tool approaches a workpiece, how it is retracted from the workpiece,
and how an operation is terminated are specified regardless of the types of machining
operation (e.g., milling, turning, and drilling). The region to be machined can be
arbitrarily divided and machined.

The machining operation cycle is the code block to command roughing, finishing,
drilling, or grooving. It is used for making programming simple and efficient. The
machining operation cycle supports various machining strategies and is designed for
minimizing user input via interactive user interface. The majority of CAM systems
have CAD functions as methods to specify the part shape and features. However,
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Categories Contents

File type Main Program / subprogram

Work material
Workpiece material is classified in terms of the

hardness of material.

Work Size

Unit, Length, Width, Height, Face-off

Initial point - Z
The Z position where tool and workpiece do not

collide in the case of rapid traverse (G00).

Multi-mode

Pitch-X Pitch-Y or arbitrary points Xn, Yn

Number : N ×M

Work-Zero Work Zero offset (G54, G55, G56, ....)

Fig. 8.15 Fundamental data for machining

with regard to shopfloor programming systems, CAD functions are inconvenient for
an operator. So, for a shopfloor programming system, a different part specification
method is used where machining features and operations are specified simultane-
ously is used.

The machining operations for milling can be classified into three groups, each of
which is composed of various machining operation cycles, as shown in Fig. 8.16.
Drilling cycle: As frequently used drilling operation cycles, drilling, boring, fine
boring, back boring, tapping, reaming, step boring, and circular milling cycles are
supported. In these cycles, it is possible for an operator to input the center of a hole
and it is possible to generate automatically the pre-machining/post-machining se-
quence for a tool that has been selected by the automatic sequencing-tool module.
Moreover, since a variety of patterns to specify the center of hole are provided for
each cycle, patterned drilling cycles are possible with only one setting.
Profile machining cycle: This cycle is used for machining the specified profile by
making a tool move along the specified profile. Linear-profile machining on a plane
(top or side), chamfering of the specified profile, and engraving of characters on a
plane are provided as profile machining cycles.
Milling cycle: As this cycle is most frequently-used in milling operation, facing, boss
machining, pocketing and slotting are supported. As facing cycles, standard shapes
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Fig. 8.16 Classification of milling operation cycles

such as rectangular unidirectional, rectangular bidirectional, circular unidirectional,
circular bidirectional, circular and rectangular island facing cycles are supported. The
pocketing cycle is used for removing the interior of a particular profile. The pock-
eting cycles for standard shapes such as rectangular, circular, track, and slot profiles
are provided. Furthermore, free pocketing cycles for complex profiles composed of
linear profiles are also implemented. Contour (unidirectional) type or helical type
(bidirectional) can be selected as toolpath generation strategies for optimal toolpaths.
.
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8.5.2.3 Input Data List for Machining Operation Cycles

The user input needed to specify the cycles mentioned in the previous section is
summarized in Tables 8.2, 8.3 and 8.4.

Table 8.2 Comparison between programming methods

1. Hole machining

O
peration

type

Z
-height

D
iam

eter
1

D
epth

1

C
ham

fer
1

D
iam

eter
(d2)

D
epth

(d2)

C
ham

fer
2

Pitch

C
utting

C
ondition

center Ts,Td,
drill drill O hole hole hole Tch:

dp.-hl. dia. dep. cham. x x x x Speed,
break Feed

count. face O c-bore c-bore c-bore Drill Drill Bott. x Ts, Td
bore back Dia. Dep. Cham. Dia. Dep. Cham. Tch,Tm:

S,F
Bore face O bore bore bore Drill Drill x x Ts, Td,

back Dia. Dep. Cham. Dia. Dep. Tch ,Tb:
S,F

Tap O Hoj.- Tap Cham. Drill Drill x Pit. Ts, Td,
ky. Dep. Dia. Dep. Tch ,Tt:

S,F
Ream. O ream. ream. Cham. Drill Drill x x Ts, Td,

Dia. Dep. Dia. Dep. Tch ,Tr:
S,F

Count. O Hoj.- Tap Cham. Cbore Cbore Bott. Pit. Ts, Td,
tap ky. Dep. Dia. Dep. Cham. Tch,Tm,

Tt: S,F
Step O Bore Bore Cham. Bore Bore Bott. x Ts, Td,
bore Dia. Dep. Dia. Dep. Cham. Tch,Tb:

S,F
Cir- O Circ. Circ. Cham. Drill Drill Bott. x Ts, Td,
Mill Dia. Dep. Dia. Dep. Cham. Tch ,Tm:

S,F
* Ts: spot drill, Td: drill, Tch: chamfer, Tm: endmill, Tb: bore, Tt: thread

8.5.2.4 Machining Geometry Definition

In order to specify the shape and profile of a part, another user interface, different
from and easier than that of a conventional CAD system, must be provided. For this,
three kinds of method for part shape specification are provided, as shown in Fig. 8.17.
The first is a method to design primitive geometric elements, rectangles, polygons,
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Table 8.3 Comparison between programming methods

2. PROFILE

O
peration

M
-type

Start-Z
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ut-D
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ut-R
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ham

fer

Fin-D

Fin-R

C
utting

C
ondition

Line R/L/C O O O O O O Tr, Tf,
IN/OUT Tch: S,F

Chamf. R/L O kans. kans. x x x Tch: S, F
IN/OUT -D -R

Side R/L O O O O x O Tr, Tf:
Grv IN/OUT S, F

Engr. Font O Width Height x Col. Row Tf: S, F
Span Span

Table 8.4 Comparison between programming methods

3. Mill

O
peration

M
-type

Start-Z

C
ut-D

C
ut-R

C
ham

fer

Fin-D

Fin-R

C
utting

C
ondition

FACE O O x O O x Tr, Tf, Tch:
S,F,Dd,Dr

Boss O O O O O O Tr, Tf, Tch:
S,F,Dd,Dr

Pocket island O O x O O O Tr, Tf, Tch:
valley S,F,Dd,Dr

Slot O O Slot O O O Tr, Tf, Tch:
width S,F,Dd,

and ellipses, by specifying basic parameters. This is called the “standard geometry
method”. The second is a method to design the contour profile by adding lines and/or
arc profiles sequentially via a graphic menu (called the oriented geometry method).
The third method, which is similar to that of a 2D CAD system, is a method to
design profiles by cutting, connecting and copying points, lines and arcs (called the
constructed geometry method).

In addition to the graphic-based conventional programming system, the software
design should allow that connection elements, such as chamfers and rounds, to be
specified when the profile (line or arc segment) is specified. To assign individual
surface finish to each segment, it has to be possible to assign different feed rates to
individual segments while profiles of a part are designed.
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Method Geometry

Standard
Geometry

Rectangle, Circle, Ellipse, Polygon

Oriented
Geometry Line Arc

Line-Arc Arc-Line

Arc-Arc 2 Points
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Constructed
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Point (Cartesian/polar, circular, matrix, line)

Line (parallel, perpendicular, tangent...)

Circle (center + R, 3 line,...)

Fig. 8.17 Part-shape specification methods

8.5.2.5 Tool/Technology Data

The Tool/Technology database recommends the appropriate cutting conditions in
terms of the tool and workpiece material and the tool shape. Four kinds of database
are supported for the tool used and tool sequence for hole machining.

1. Tool database: As shown in Fig. 8.18, this manages the data about tool shape
and material. It provides the data for generating toolpaths and deciding cutting
conditions.

2. Cutting condition database: this manages the data about cutting speed and feed
according to tool type, material, and workpiece material.

3. Tool sequence database: This manages the machining sequence for efficient hole
machining.

4. Tool offset database: This manages the data about tool offset.

8.5.2.6 Machining Strategy Data

To generate toolpaths using an operation cycle, it is necessary to decide the machin-
ing strategy once the machining features and tools have been decided. In Table 8.5,
the data about the machining strategy that should be considered for milling oper-
ations are summarized. The usage of these for each operation cycle (hole/profile/
milling or ‘H’, ‘P’, ‘M’ in Table 8.5) is checked.
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Table 8.5 Machining strategy data

Parameters Description H P M Remark
Return type Tool retraction method O O O

(XY/Z, XYZ)
CLD Allowance amount when O O O

tool approaches
RTD Tool retraction distance O O O
Chamfer all. Chamfer allowance along O O O
-R radial direction
Chamfer all. Chamfer allowance along O O O
-D depth direction
Spot Depth Depth of Spot Drill O x x
Through Hole Selection of stop hole O x x

or through hole
Through all. Backside allowance of O x x

through hole
Dwell Dwell Time at bottom O x x

of hole
Relief Return relief amount in O x x Drill/Bore

case of drilling and boring
Feed factor Retract feed factor O x x Bore/Reamer
Mill type Exact arc processing O x x C bore/Cir-Mill

method
Tool end Tool end allowance in O x x Bore
allowance Boring
Tool end Tool end allowance in O x x Bore
allowance 2 Back-Boring
Finishing Allowance of bottom in O x x Back C-Bore/
allowance boring Bore
Stop Hole Drilling depth allowance O x x Bore
allowance for threading, boring or

reaming
Incomplete Number of incomplete O x x
thread num. threads in tapping
Interference Checking the interference x O O

before machining (the
number of blocks ahead
that are examined)

Corner Machining method at edge. x O O
(Round/sharp/square/
trang/fanuc)

Cycle path Straight/Zigzag with or x x O Face
without retract

Pock path para-contour/para-axial x x O
Cut type Down/upward machining x x x
Direction machining direction: any/ x x x

CW/CCW
Run-in Approach: no/Arc/ x O x

Parallel/Perpendicular
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Table 8.5 (continued)
Run-out Approach: no/Arc / x O x

Parallel/Perpendicular
Face R feed Feed factor in radius x x O Face
factor direction.
Face R Facing allowance in x x O Face
allowance radius direction.
Face Removal rate in radius x x O Face
allowance direction
Pock R feed Feed factor in radius x x O Pocket
factor direction
Boss outer Feed factor for mach- x x O Boss
Ffac ining outside of Boss
Axial D- Feed factor for mach- x x O Boss, Pocket
Ffac ining in axial direction
Pock R-Fac Feed factor for full x x O Pocket

slot cutting in the case
of pocketing.

Overlap Overlap amount when x O O
amount for approaching and ret-
closed shape racting in closed shape

8.5.2.7 Graphic Simulation for Verification

Graphic simulation is carried out by a path simulator for verifying tool paths and a
solid simulator for verifying the machined shape. A path simulator displays toolpaths
as a sequence of lines or arcs and is used for visual verification of the toolpath of a
part program (see Fig. 8.19a). It provides the functions for checking for collisions
between tools and clamps and editing a part program for correcting incorrect tool
paths.

A solid simulator shows the change of part shape of a 3D solid model during
machining. Also by using a solid simulator, it is possible to verify tool paths and
analyze realistically the machined part (see Fig. 8.19b).

During the programming sequence, the screen displays complete operations.
Therefore, if a verification result is different from the operator’s expectations, it is
possible to modify the operation and quickly correct the program during simulation.

The part shape is also displayed on the screen and regions that cannot be cut due
to the tool geometry are checked and displayed. In particular, blank material and
removal volumes are displayed simultaneously on the screen and whenever a partic-
ular operation is specified, the volume remaining after completion of the specified
operation is displayed.

Tool interference due to the diameter of the specified tool is checked automati-
cally. Because machining time (including cutting time and non-cutting time) is al-
ways displayed during simulation, the simulation function can be used as the tool for
optimizing toolpaths.
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Hole

Reamer
Material, diameter,
length

Hole

Face mill

Material, diameter,

length, cutting teeth

number

Mill-face

End mill

Material, diameter, len.

flute num., tool type

(flat, ball), ball radius

Hole, Profile, Mill

Side mill

Material, diameter, len.

cutting teeth num.,

cutter length

Profile-side

Fig. 8.18 Milling tool database

(a) (b)

Fig. 8.19 Graphical simulation
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8.5.2.8 Operation Sequence Control

This module shows the specified operation cycles and enables an operator to modify
and delete them while editing the operation cycle. It also enables addition of new
operation cycles and operation sequence changes. It enables operators who are unfa-
miliar with process planning to generate consistent and efficient programs. Moreover,
it is possible to store the generated program on memory or disk and use it whenever
it is needed.

8.6 Development of the Machining Cycle

In this section, the implementation of turning manual G-code cycles and various
machining cycles for conversational programming system will be described.

8.6.1 Turning Fixed Cycle

From the programmer’s point of view, it is necessary that frequently used machin-
ing operations are defined in fixed format and used like subprograms when a part
program is edited. A series of machining operations that are used repeatedly in NC
machining are defined as one block that is called a “fixed cycle”. The fixed cycle for
turning can be classified into two types as shown in Table 8.6. Figure 8.20 shows
G92, which is the simple fixed G-code for threading, and G76, which is the complex
fixed G-code for threading. Compared with the tool path of the simple fixed cycle,
that of the complex fixed cycle is complicated. However, it is relatively simple to
generate the toolpath from the input data.

Table 8.6 Machining strategy data

Type Code Description type Code Description
Single G90 Turning (Cutting Complex Fixed G70 Finishing
Fixed Cycle A) Cycle G71 Outer turning
Cycle G92 Thread cutting G72 Facing rough

G94 Facing (Cutting G73 Pattern repet.
Cycle B) G74 Peck drilling

in Z-axis
G75 Grooving in

X-axis
G76 Thread cutting



306 8 Man–Machine Interface

Start
pointTool

A

deID

K
D

RI

U/2

W

G76

G92 U_ _ W_ _ R_ _ F_ _
U: Incremental value of coordinate 
system X
W: Incremental value of coordinate 
system Z
R: Taper depth (incremental value, sign 
required)

G76 U_ _ W_ _ I _ _ K _ _ deID_ _ E_ _A
U: X-axis distance from start to end point
W: Z-axis distance from start to end point
I: Radial difference at start and end of 
thread
K: Thread height (radial data)
deID: First cut depth (radial data)
E: Lead of thread
D: Finish allowance

W Start
point

U/2
R

G92

Fig. 8.20 Simple and complex G-codes for threading

8.6.2 Turning Cycle for Arbitrary Shape

8.6.2.1 Characteristics of Machining Cycles for Arbitrary Shapes

The G-code cycles mentioned in the above section are used for generating tool paths
for a cylindrical part. In order to apply them successfully it should be assumed that
the radius of a part increases or decreases consistently and that tool interference does
not occur. However, a forged part or cast part typically has arbitrary shape and, in this
section, the roughing cycle for these will be addressed. The roughing cycle generates
the toolpath without tool interference by considering the geometry of the tool. It does
not generate toolpaths for regions where material is absent in order to prevent cutting
air. If there is a region where tool interference cannot be avoided, the region is not
cut and remains to be cut in a subsequent operation.

For example, as shown in Fig. 8.21, the dotted line that represents the toolpath
without air-cut is an appropriate tool path for obtaining the finished part from a cast
workpiece.

8.6.2.2 Toolpath Algorithm

The cycle algorithm for generating an optimal toolpath is executed using eight steps.
The steps are as follows.

In the first step, the workpiece shape and desired shape are specified (Fig. 8.22).
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Workpiece shape Desired final shape Tool path w/o air-cut

Fig. 8.21 Appropriate toolpath

Desired final shape Workpiece shape

Fig. 8.22 Workpiece and desired shapes

In the second step, the collision-free region (machineable region) is calculated
based on the cutting edge angle (side cutting edge angle and end cutting edge angle)
of the tool, cutting angle, tool imaginary nose, tool type, tool holder’s shape and
workpiece shape, see Fig. 8.23.

Interference room angle

Cutting edge angle

Cutting angle

Fig. 8.23 Collision-free region calculation

The cutting angle is calculated as follows, based on the cutting edge angle and
interference room angle.

Cutting angle = cutting edge angle - interference space angle (in general, 3 or 5
degrees)
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Based on the computed cutting angle, the machineable region that prevents colli-
sions between tool and workpiece and over-cut is calculated.

In the third step, the offset profile is generated by offsetting the machineable re-
gion from the second step within the finish allowance and with the tool nose radius.

In the fourth step, by combining the offset profile with the original profile of the
part, a new profile is generated. In the case where the blank material is a cylinder,
a new profile is generated by adding the linear profile of the cylinder, SA[], to the
offset profile, S[], as shown in Fig. 8.24a. In the case where the blank material has an
arbitrary shape, as with a cast part, the profile to be machined is created by combining
the profile of the part, SA[], with the offset profile, S[], as shown in Fig. 8.24b.

(a) Bar-type workpiece

(b) Workpiece having arbitrary shape

S[4]

S[4]

S[4]

S[4]

S[1]S[1]

S[1] S[1]

S[1]

S[1]

S[1]

S[0]

S[0]

S[0]

S[0]

S[0]

S[2]

S[2]

S[2]

S[2]

S[2]

S[3]

S[3]

S[3]

S[3]

S[3]

S[5]

S[6]

S[7]

S[5]

nS=7

nS=5 nS=6

nS=8

Combine
S[] & SA[]

Combine
S[] & SA[]

S[0]S[0]

Fig. 8.24 Profile combination

In the fifth step, peak points and valley points are sought from the S[] obtained
from the fourth step, and the total number of peak points is counted.

Peak point (Pi): { Pi|Xi ≥ Xi−1 and Xi > Xi+1,∀i}
where, i is the index of a point on the profile.
If Xi = Xi−1 and Xi < Xi−2, Pi is not peak point.

Valley point (Vi): {Vi|Xi ≤ Xi−1&&Xi < Xi,∀i}
where, i is the index of a point of the profile.

In Fig. 8.24a, S[3] is a peak point and S[1] is a valley point. In Fig. 8.24b, S[5] is
a peak point and S[4] is a valley point.

In the sixth step, the profile from the fourth step is divided into multiple profiles
at the valley points and the divided profiles are stored in a buffer. In the case of the
profile shown in Fig. 8.24a, the profile is divided at valley point S[1] as shown in
Fig. 8.26.
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Valley point

Peak point

X

Z

Fig. 8.25 Peak and valley points

S2[0]

S2[1]

S2[2]

S2[3] S1[2] S1[1]

S1[0]

nS2=4 nS1=3

S2[0]

S2[1]

S2[2]

S2[3] S1[4] S1[3]

S1[2]
S1[1]

S1[0]

nS2=4 nS1=5

Fig. 8.26 Divided profiles

In the seventh step, the toolpath is generated based on the divided profiles and the
specified cutting depth, as shown in Fig. 8.27a.

Stock removal path ( ) {
• The peak points are sorted in terms of the X position and stored in peak array[].
• The number of cutting layers is calculated (num = (Xe−Xs)/ f eed + 2).
• From S1[] (first layer) and cutting depth are calculated the intersection point,

cross S1[] and cross[].
Where, cross[] is the path whose X position is constant and cross S1[] is the
intersection point between cross[] and S1[].

• From S2[] and cross[], cross S2[] is computed.
• The tool path is generated based on cross S1[], cross S2[], S1[], and S2[].

}

(a) (b) (c)

Fig. 8.27 Cutting toolpaths for turning
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The eighth step, after the above steps have been completed, checks whether the
current machined profile is the last peak profile. If yes, the cycle is terminated and,
if not, the region to be machined is recalculated as shown in Figs. 8.27b and 8.27c.

Consequently, as the turning cycle for machining the part with arbitrary shape
generates the toolpath automatically using the data on the workpiece shape, finished
shape, and tools from the operator, it allows the unskilled operator to create the part
program quickly.

8.6.3 Corner Machining Cycle

As mentioned in the previous section, an uncut area due to the tool shape can remain
after completing the machining by the specified tool in the case of turning. This
is why a toolpath is not generated in a region in which tool interference occurs.
Therefore, in order to machine the uncut region after roughing, partial machining is
executed after selecting a different tool. In the case of turning this is called “corner
machining”.

The toolpath for corner machining is generated based on the intersection points (A
and B) between the uncut area and the finished shape, cutting depth d, and finishing
allowance k. The details of the algorithm can be summarized, with Fig. 8.28, as
follows:

(c)

(a) (b)
d

A(Q0)

Q2Q1
m

B B
Q1(q1x,q1z)

Q2(q2x,q2z)L3 L4

A(Q0)L5

L2
L1

Fig. 8.28 Corner machining geometry
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STEP 1. Cutting depth d and finish allowance k are input by the user and intersection
points A and B are retrieved from the previous roughing cycle, (Fig. 8.28a).

STEP 2. The line m, which is at cutting depth d below the highest Z position of the
corner, is defined. The intersection points Q1 and Q2 between the line m and the
uncut area at the corner are calculated, (Fig. 8.28a).

STEP 3. The approach path for approaching the uncut area and the net-cut path for
machining are generated. As shown in Fig. 8.28b, L1 and L2 are generated as the
approach path for approaching and L3 and L4 for machining from Q1 to Q0 through
Q2 are generated. In addition, L5 as a rapid path for retracting to the safety plane is
generated.

STEP 4. The line m moves in steps of cutting depth d along the negative Z-axis.
STEP 2 and STEP 3 are repeated until the Z position of the line m is smaller than the
lowest Z position of the uncut area, (Fig. 8.28c).

STEP 5. If there is more than one uncut area, STEP 2, STEP 3, and STEP 4 are
repeated for each uncut area. The join paths connecting the paths obtained from
STEP 3 are generated and inserted. Finally, the rapid path for moving to the tool
retract position is generated and inserted, (Fig. 8.28c).

This algorithm can be summarized as the procedure chart in Fig. 8.29.

Move rapidly tool up to Z = Q1z

Move rapidly tool up to X = Q1x

Cut along straight line up to Z = Q2z

Cut along final shape from Q2 to Q0

Move rapidly tool up to X = Q2x + k

Start

Parameter Initialization

m = ax

Q0 = A

m = m - d

m = bx

Calculate Q1 using line m and uncut
shape between point A and B

Calculate Q2 using line m and final
shape between point A and B

1

2

3
1

Q1 = Q0

m = bx
yes

All shape?

yes
Retraction Mode

End

m = bx

no

no

2

3

Fig. 8.29 Procedure chart for corner machining
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8.6.4 Drilling Sequence

Typically, when the NC program for drilling multiple holes is generated, the pro-
grammer first classifies the holes into the groups depending on the hole shape and
generates a program where the holes belonging to the same group are machined in
a row. After completing machining of the holes in the group, holes belonging to an-
other group are machined. In order to machine a hole, it is typical to use more than
one tool. For example, in the case of tapping, center drilling, drilling, boring, and
tapping should be executed one after the other. Therefore, if we consider the usage
of tools related to drilling, the sequence of tools is considered as follows:

Group 1: T11, T12, . . . . . . . . . T1a

Group 2: T21, T22, . . . . . . . . . T2b

Group M: Tm1, Tm2, . . . . . . . . . Tmm

where tools used in one particular group may be used in another group. Therefore, if
the usage sequence of tools is well determined, it is possible to decrease the number
of tool changes and hence the machining time.

However, if machining is executed group by group, the same tool may be used
several times, which increases the tool change time and hence the total machining
time. Therefore, it is necessary to make an NC program that reduces the number of
tool changes.

Supposing that more than one hole can be classified into several groups and a
particular tool can be used for holes belonging to different groups. In this case, if
the tool is used for all the holes in a row, the number of tool changes is decreased as
many as M−1 times, where M is the number of groups where the tool is used.

The generation procedure of an NC program for drilling can be divided into three
steps;

1. In the first step, the individual part program for each hole with different shape is
generated.

2. In the second step, the usage sequence of the tools used in several groups is de-
termined.

3. In the third step, the NC program for complete drilling is generated depending on
the usage sequence of the tools.

In detail, the above steps are described as follows (Fig. 8.30). First, the usage
sequence of tools is determined according to the shape of the holes. In the example,
tools A, B, C, D, and E are used sequentially in the first part program P1. For the
second part program P2, tools A, F, C, G, and E are used sequentially. For the third
part program P3, tools H, I, C, J, and K are used sequentially.

After completing the first part program, the second, and the third, a check is made
as to whether tools used for common operations exist. If these do exist, the tool that
is used in the most operations is selected. In Fig. 8.30, this is tool C, which is used
in three part programs.
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Fig. 8.30 Part programs to be executed

After selecting the common tool, each part program is divided into three parts;
the part which should be executed before using the common tool, the part that is
executed by the common tool, and the part that is executed after using the common
tool. In addition, it is necessary to divide the tools in each group into 1) the tools
used before the common tool, 2) the tools used after the common tool, and 3) the
common tool.

In Fig. 8.30, P11, P21, and P31 are the part programs that should be executed
before using the common tool. The tools used in P11, P21, and P31 are as follows.

P11: A, B
P21: A, F
P31: H, I

In Fig. 8.30, P12, P22, and P32 are the part programs that should be executed after
using the common tool and the tools used in P12, P22, and P32 are as follows.

P12: D, E
P22: G, E
P32: J, K

After that, the above steps are repeated until no shared tool is found in P11, P21,
P31, P12, P22, and P32,
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The tool sequence in P11, P21, and P31 is determined as A’B’F’H’I.
The tool sequence in P12, P22, and P32 is determined as D’G’E’J’K.
Finally, the usage sequence of all the tools is determined as A’ B’ F’ H’ I’ C’

D’ G’ E’ J’ K. After determining the usage sequence of tools, the part programs are
reassembled depending on the determined tool usage sequence.

8.7 Summary

The part that provides the user interface in the CNC system is the MMI unit. For the
design of an MMI that allows a user to edit a part program, operate the machine, and
monitor the machine status, it is necessary to consider ergonomics, design, and the
user’s aptitude as well as technological aspects.

In order to develop an MMI system, not only the user applications but also the
design of the kernel layer for connecting to the NCK and the applications for mon-
itoring the machine status, operating the NC, editing the program, and managing
parameters are required.

The program-editing function, which is one of the key MMI functions, has ad-
vanced in a variety of versions developed by many CNC makers. Recently, con-
versational programming systems that can be used on the shopfloor have become a
basic programming tool. The conversational programming system makes it possible
for an unskilled user to generate a part program by allowing users to input data in an
interactive way.

The core of the conversational programming system provides functions for gen-
erating interference-free toolpaths whose machining time is minimized and in which
the number of tool changes is minimized, verifying tool paths and the finished part,
and estimating machining time based on the minimum user input.



Chapter 9
CNC Architecture Design

It is necessary to design the architecture of hardware and software modules in order
to implement a CNC system consisting of a variety of modules such as NCK, MMI,
and PLC. System programming for operating these modules in real time is also re-
quired. In this chapter, the main functionalities and commands of real time operating
systems (OS) for real-time programming systems will be described. Through in-
vestigation of multi-processing hardware architecture, the user will learn the basic
approach for designing the architecture of a CNC system that requires the guarantee
of real-time operation.

9.1 Introduction

A CNC system consists of the NCK unit that is composed of the interpreter module
that interprets the part program, the interpolator module that creates the moving path
of the tool, the acceleration/deceleration module that smoothes the axis movement,
and the position control unit that controls the servo motor based on the feedback
signal and interpolation result. In addition to the NCK unit, a CNC system contains
an MMI unit that enables a user to operate the CNC, monitor the operation status
and messages, and make a part program. Finally there is the PLC unit that logically
controls the machine except for the servo motors.

In the CNC system, various tasks from the NCK, MMI, and PLC units are ex-
ecuted simultaneously and each task requires real-time operation. Therefore, it is
essential to use a real-time OS in order to operate various real-time tasks in a multi-
processing environment. In addition, the design of the architecture of hardware and
software tasks to realize CNC system is required. In conclusion, the following must
be considered in order to design a CNC system:

1. Real-time operating system (the kind of system call and usable hardware)
2. The architecture of hardware (the number of CPUs and the way of connecting

between modules)

315
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3. The architecture of the software (the design of task modules and the system ker-
nel)

A real-time OS provides various functions such as task scheduling, inter-task
communication resource sharing, and task synchronization in order to use the hard-
ware resources effectively. Accordingly, the CNC designer should consider simulta-
neously the hardware resource to be managed and the functionality (or performance
index) of the OS.

Recently, desktop PCs have been used as the basic hardware for industrial control
systems. However, a novel idea is required to build a CNC system utilizing a desktop
PC and PC operating system because the DOS or Windows used widely as the OS of
a desktop PC cannot support the real-time requirements of a CNC system. One idea
to meet the real-time criteria of PC-based CNC systems is to utilize a real-time OS
and non-real-time PC OS simultaneously.

When the hardware architecture of a CNC system is designed, the number of
processors needed to satisfy the real-time processing requirements of NCK, PLC, and
MMI should be considered. If an architecture based on multi-processors is designed,
the communication method between processors should be considered.

In terms of software, it is necessary to divide all the functions of the CNC system
into appropriate modules from a functional point of view. Furthermore, the design of
the system kernel, which plays the role of booting up the CNC system, terminating
the CNC system, communicating data and events to the tasks, and switching tasks is
also required.

While the CNC system is being implemented, an adequate development language
should be selected and how to debug should also be considered. Because typical
debugging tools for traditional procedural systems are not efficient and appropriate as
debugging tools for real-time systems, a compiler in which an appropriate debugging
tool is supported should be selected.

In addition, it is necessary to consider how to increase the reliability of the sys-
tem and how to program for the real time nature of the task. For example, how to
handle the exceptions that occur during system execution should be considered and
the use of assembly code for the hard real-time tasks that must be carried out within
extremely short times may also be necessary.

In this chapter, real-time OS and hardware architecture for designing CNC sys-
tems will be described. The system programming method under real-time OS, the
basic structure of real-time OS, and the concept of resource handling will also be
addressed. Moreover, with programming examples using the functionalities of real-
time OS, the reader will learn the system programming method for implementing
real-time CNC systems. By introducing the advantages and disadvantages of vari-
ous hardware architectures which can be considered as the basis hardware for CNC
system to the reader, the reader will gain the knowledge to design the hardware ar-
chitecture that is appropriate for the development goal.
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9.2 Operating Systems

An operating system is a software program for the purpose of using the hardware
efficiently. As the purpose of an OS is to make it efficient to use hardware resources
(processor, memory, input/output devices), the OS manages the usage of hardware
resources between applications and enables applications to share data and hardware
resources. In addition, an OS controls various input/output devices and user pro-
grams. In terms of the hardware architecture, user requirements, and environment to
be used, an OS can be divided into several systems.

A multi-programming system increases the throughput of the processor by load-
ing several user applications simultaneously into main memory, executing different
user applications in turn using one processor. For example, when an application does
not use a processor while using an input/output device because of the difference be-
tween the input/output device’s speed and the processor’s speed, the system increases
the throughput of the processor by passing the right of processor occupation to an-
other task in the queue waiting to be executed. Furthermore, skilled management of
main memory is required in order to allow several programs to be in a ready-state si-
multaneously and processor scheduling is essential in order to manage the execution
of several applications or tasks.

As a time-sharing system is the extension of the multi-programming concept, sev-
eral tasks are carried out by one processor in turn by giving them specified time
slices. This means that a time sharing system divides the processor usage time based
on processor scheduling and multi-programming and passes the right of processor’s
usage to each user in turn in order to enable several users to use one system simulta-
neously. Therefore, a time-sharing system is appropriate when many users share one
computer simultaneously. For this kind of system, techniques for switching tasks,
managing memory, scheduling the processes, managing disk devices and managing
files are required.

A multi-processing system is used to overcome the drawback of a single proces-
sor system, it is a system where multiple processors carry out tasks collaboratively
through communication and memory sharing in order to improve the system perfor-
mance and reliability. Multi-processing systems have been widely used as fundamen-
tal systems for modern CNCs. The key problem for the design of a multi-processing
system is how to connect multiple processors and input/output processors with mem-
ory. There are differences between the OS of a multi-processing system and that of
a single processor system and the differences will be described in another section.

The term “distributed system” denotes a system that carries out a task by using
simultaneously multiple executors such as node, site, and computer in order to share
the resources of multiple computers, increase the computing power by means of par-
allel and distributed execution, and increase the reliability of a system. In this type of
system, data communication between computers is done via external communication
cables. Therefore, each computer has its own memory and communicates with other
computers via a high-speed bus or communication cable.
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Because the term “real-time system” denotes a system that can begin the desired
tasks within a specific time and complete it within a given time period, it is necessary
that the response time (operational deadline) from event to system response is smaller
than a specific time period. To be more precise, a real-time system does not mean the
fastest system in a narrow sense, a real-time system means a system that does not
work correctly in the case that the response time exceeds the specific time period.
The ultimate goal of a real-time system is handling the data regularly occurring in
real time or promptly handling occasional events. For example, in the case of a robot
system that picks and moves objects on a conveyer belt, it is necessary to recognize
the object and reach the object in a limited time. If picking up the object fails because
of the delay of reaching the object, the robot system malfunctions. Therefore, the
ultimate goal of a real-time OS for a real-time system is to provide an environment
capable of completing applications in real time.

Fast & Simple
RTOS

Slow & Complex
RTOS

Electronics
only

Program
+ ISRs

RTOS
multi-tasking

OS
multi-process Mechanics Manual

1 ns 1 μs 1 ms 1 s 10 s 100 s 1000 s

Fig. 9.1 Time spectrum of a real-time system

Figure 9.1 compares the time spectrum required by a real-time OS with the time
spectrum required by a general system. In Fig. 9.1, the time on the X-axis indicates
the deadline of the system (the amount of time is not absolute and can be varied
depending on the processor’s performance). Therefore, a real-time OS can be defined
as a system that can carry out promptly a particular task every few to several tens of
milliseconds, which is longer than the runtime of the interrupt service routine (ISR)
but shorter than the OS runtime.

In addition, a real-time system means a system that can generate accurate output
within a limited time in any surroundings as well as one that can respond quickly to
external events or signals.
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Accordingly, firstly in a real-time system, the exactness of time by a highly accu-
rate scheduling function should be considered in contrast to a non-real-time system.
In other words, allocating adequate resources to the tasks, initiating tasks, and finish-
ing tasks have to be completed within the deadline. In order to achieve the exactness
of time, it is necessary to get the property and priority of a task before executing
it. The exactness of time can be achieved by a real-time scheduler that allocates
resources and executes tasks based on the information of the tasks including time
limits.

Secondly, the reliability of the OS also has to be considered. Because real-time
systems are used in surroundings where only one error results in unrecoverable dis-
aster, it is essential to guarantee robustness from errors and predictability of trouble.
Therefore, all policies and techniques for a real-time system should be designed for
predicting problems occurring due to time limits and guaranteeing reliability of the
running tasks by preparing for occurrence of problems and removing them.

Real-time systems can be divided into two types: hard real-time systems and soft
real-time systems. In general, a hard real-time system executes iteratively within
several milliseconds or several tens of milliseconds. In the case of hard real-time
systems, it is not permitted that completion of a task exceeds the deadline. If com-
pletion of the task exceeds the deadline, the completion result has no meaning and, in
the worst case, the system may be destroyed. Therefore, a hard real-time system can
be defined as a system in which damage is large in the case of missing a deadline.

On the other hand, in a soft real-time system, tasks execute iteratively within
several tens or several hundreds of milliseconds, in general, and missing a deadline
results in slight damage or loss of system efficiency. Accordingly, a hard real-time
system means a system that should never miss a deadline and a soft real-time system
means a system that does not miss a deadline.

From the point of view of a real-time system, a CNC system can be defined as
a hard real-time system. Generally, position control of a CNC system is repeated
every few milliseconds or every few hundreds of nanoseconds and delay in position
control stops the machine and results in a difference between the programmed path
and the actual path. Therefore, the OS for a CNC system must be a real-time OS that
guarantees the hard real-time property on a single processor or multiple processors.

9.3 Real-time Programming

A program is a set of instructions that lists various operations and data objects such
as constants and variables. The procedure of creating a program is called “program-
ming”. In general, how to make a program can be classified into two types; sequential
programming and parallel (real-time) programming. Sequential programming means
that the instructions of a program are executed sequentially in a fixed sequence (see
Fig. 9.2a). The purpose of sequential programming is to convert an input into a par-
ticular output via an algorithm or a procedure. Therefore, in a sequential program, the
execution of a program is not restricted by time. In terms of efficiency, the execution
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time is considered and the output depends on the algorithm. Accordingly, it can be
generated without detailed knowledge of the OS, hardware devices, and resources,
since a sequential program can be executed sequentially in a fixed order depending
on the input data.

Order

Elapsed time

Task1

Task2

Task3

Task4

1     2     3     4     5

Priority

Elapsed time

Task1

Task2

Task3

Task4

1     2     3     4     5

On the other hand, since the task operation sequence in real-time programming
is different from that in sequential programming, a programmer has to consider the
environment where the program is to be carried out and cannot code the program
indepently of hardware or system resources. Unlike the sequential program, where
processes or tasks are carried out sequentially, multiple processes and tasks in a real-
time program are executed in parallel. As shown in Fig. 9.2b, since each task passes
the right to processor usage to the task with next priority after completing execution
and the task with the lowest priority should be performed during the idle time, it
is necessary to consider the execution sequence of tasks and feasible resources in
real-time programming. For example, a CNC system carries out a variety of tasks
simultaneously, such as the NCK tasks that interpret a part program and calculate the
displacement of each axis during the sampling time of position control, the monitor-
ing task that checks the abnormality of a machine every specified time, and the MMI
task that displays the status of machine.

Therefore, for real-time programming, the programmer must make an effort to
consider how to respond to the input signal interrupt every constant time unit, how
to calculate task execution time, how to pass the right to processor usage to another
task, how to switch the context and how to allocate resources (e.g., memory) to tasks
or processes.

What should be considered specifically for real-time programming and what
should be needed to respond to external requests cannot be represented by the or-
dinary functions for a sequential program. Since a variety of programs or tasks are

ming (b)
Fig. 9.2 Comparison of task operation sequence between sequential (a) and real-time program-
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executed simultaneously and cooperation between processes or tasks has to be con-
sidered in a real-time system, special functions for real-time programming are re-
quired. They can be summarized as follows:

1. Multi-tasking function that enables execution of more than one task by a single
processor or multiple processors.

2. Synchronization function that enables adjustment of the execution of tasks.
3. Inter-communication function that enables exchange of data between tasks.
4. Preemption function that enables stopping the task being executed in order to

carry out a high-priority task and scheduling functions that enable management
of the execution order of tasks.

5. Timer function that enables beginning a task at the right time.
6. Interrupt function and exception handling function that enables transmission of

an asynchronous event to a processor.

The ultimate goal of a real-time OS is to provide an environment where it is
possible to use the above-mentioned functions required for real-time programming.
The CNC system designer must be able to do real-time programming by selecting
a real-time OS that meets the requirements for system performance, studying the
functions of the selected real-time OS, and using them efficiently. Therefore, in the
following sections, the kernel structure of a real-time OS, system calls, and real-time
programming will be addressed.

9.4 Structure of a Real-time OS

The operating system is the software that enables efficient and easy use of a hard-
ware resource, as mentioned in the previous section. In general, the core of an OS is
the kernel that handles a variety of system calls, being the interface between an ap-
plication and the OS, based on a hardware system such as a processor, memory, and
disk, as shown in Fig. 9.3. A real-time OS (RTOS) makes it easy to build real-time
systems and its kernel provides the following functions:

1. Multi-tasking
2. Priority-based, pre-emptive scheduling
3. Synchronization and inter-process communication
4. Interrupt service

The functions of the modules that compose the kernel of a real-time OS is as
follows:

1. Process Manager: This module is the key function of a real-time OS and makes
multi-tasking possible. It makes it possible to switch context depending on the
priority and condition of a process or task. Context switching is the particular
procedure that occurs when a process makes a system call, a timer interrupt is
issued, or an external interrupt signal is issued. During context switching, the
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Fig. 9.3 Structure of a real-time OS

register values of the system are stored on a stack before stopping the task and the
stored register values are restored when the stopped task is resumed.
Complex operations are required for the exchange of context information between
the task stack and the system registers. Because the time spent switching context
takes up the majority of the whole response time it is necessary to increase the
chance of switching context and decrease the time spent in switching context
by increasing the frequency of the system timer. The context switching time has
a large influence on the performance of a real-time OS and is generally imple-
mented in assembly code.
In order to manage tasks, an identification number and priority are assigned to
each task. The priority can be specified by the programmer. The process manager
is able to stop a running task to activate a task with higher priority and, for this,
there is a priority-based preemptive scheduler.

2. Memory Manager: As this module plays the role of managing the memory among
hardware resources, it provides the functions for allocating and freeing memory.
In the case of C programming, an automatic memory allocation method using
the malloc function is used for allocating memory but, in the case of real-time
programming, a memory-handling method to specify directly the size and ad-
dress of the allocated memory is used. This is for preventing the memory of each
task from coming into conflict. Because particular tasks are always executed in
real-time programs, this module provides a simple and fast memory management
function by using a flat model instead of a paging model.

3. Process coordinator: In a real-time OS, a process exists in one of a number of
states, such as executing state, suspended state, and ready state. A process coordi-
nator performs state transition according to the priority and schedule of a task. It
plays the role of controlling the status of a task, such as creating a task, deleting,
suspending until a specified condition is satisfied, and resuming if the specified
condition is satisfied.

4. Inter-process Communication (IPC): a process must be able to exchange data with
other processes or the interrupt service routine (ISR) in order to be selectively
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synchronized with other processes. In addition, it is possible to occupy exclusively
protected hardware resources in order to prevent conflict between processes. To
meet these requirements, a semaphore mechanism is used for synchronization of
processes and controlling critical regions and a message queue and mail box are
used for exchanging data between processes.

5. Clock Manager: Basically, this module plays the role of real-time timer for multi-
processing. It is used for invoking the sleep function for delaying the execution of
a task and the wake-up function for synchronizing the execution of tasks.

6. Device Manager: This module plays the role of managing input/output devices
(e.g., RS232C, Ethernet, I/O, Printer, and Servo, etc.) connected to the CNC sys-
tem via the device driver. It provides the input/output management functions to
enable consistent interfacing for all kinds of input/output devices regardless of
the kind of device. By providing common input/output instructions (e.g., open,
close, getc, putc, read, and write), it enables a programmer to transmit data to a
communication port or store data on disk with the same instructions, only using
different device identification numbers.

Besides the above-mentioned modules, a real-time OS consists of a file manager,
which carries out file handling such as creation, deletion, copying, and renaming;
and an auxiliary memory manager that handles large-sized auxiliary memory de-
vices such as a hard disk. In this chapter, the core functions of the real-time OS ker-
nel such as management of a process, protection of a resource, and communication
and cooperation between processes that is needed to implement embedded systems
such as a CNC system will be described in detail. Also, using real-time programs
based on kernel functions, how to do system programming for a CNC system will be
described.

9.5 Process Management

The process management method, being a basic element defining processor activity
in a real-time OS, will be addressed. The process is a basic element defining proces-
sor activity in a real-time OS and, in other words, a process is a running program. A
process is composed of a code region where program instructions are stored, a data
region where process variables are stored, the heap area, where dynamic memory
is allocated, and the stack area, where arguments of subroutines, return addresses,
and temporary variables are stored. Although a program is edited and compiled in
the same high-level language, a program operating on a different hardware system
is executed as a different process, with the different code regions, heaps, and stacks.
Therefore, a process is an instance that has CPU register values, the addresses of
code/data/stack, and a pointer that refers to the next instruction to be executed. The
basic data about the execution of the process is defined as the ‘context’. A process
control block is the region where all data changed by a process are stored, it includes
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process status, program counter (the pointer of the instruction to be executed next),
schedule data, memory management data, and input/output status data.

9.5.1 Process Creation and Termination

A mechanism to create and terminate processes is required in order to execute multi-
tasking, executing multiple processes by single processor.

1. Creation: Several processes can be created with a system call for process creation.
The process that creates a process is called the ‘parent process’ and the generated
process is called the ‘child process’. The parent process can share resources with
the child processes.

2. Termination: After completing the last instruction, it is possible to request the OS
to terminate a process or delete a particular process by a system call from another
process. Typically, the system does not permit the existence of a child process
after destruction of its parent process. Therefore, all child processes should be
terminated when a parent process is terminated.

9.5.2 Process State Transition

In order to execute multiple processes efficiently, it is necessary that the status of
processes can be changed to a variety of states. According to the process activity, a
process in a real-time OS can be classified as being in one of six kinds of state.

1. Current state: This means the case that a process occupies a processor and is being
executed (running). In the case of a single processor, only one process can be in
the current state.

2. Ready state: This means the case that a process does not currently occupy a pro-
cessor but can be executed at any time.

3. Receiving state: This means the case that a process is awaiting a message or a
mail from another process.

4. Sleeping state: This means the case that a process in ‘sleeping’ during a specified
time.

5. Suspended state: This means the case that a process has stopped execution. When
a process is created it is always in this state.

6. Waiting state: This means the case that a process is waiting for an external event
or semaphore.

The terms mentioned above are not definitive and different names are used de-
pending on the operating system. However, the names in different operating systems
can be matched with the above-mentioned six states.
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Figure 9.4 depicts transitions between the above-mentioned six states. Initially, a
process that is generated by a “create” instruction is in Suspended state. The state
of the process passes into the Ready state through a “Resume” instruction. When a
resource is allocated to the process by the scheduler, the process moves to the Current
state. A process in Current state moves to another state (e.g., Waiting state, Ready
state, and Suspended state) through “wait”, “resched”, “suspend” instructions. The
transition of the process state continues until the “delete” instruction is called.

Waiting

Suspended

Signal Wait

Suspened Suspened

Resume

Resched

Resched

Create

Ready Current

Fig. 9.4 Diagram of Process State Transitions

Figure 9.5 shows a program example to implement process management. Task 1
is created by rt create(), it is suspended by rt suspend(), it transfers to Ready state by
rt resume(), and, finally, it is deleted by rt delete(). The bold elements in the example
code show the instructions of the real-time OS.

9.5.3 Process Scheduling

A special strategy to select the next task from among the tasks waiting for execution
is necessary in order to maximize the utilization of a processor. The task that should
be carried out in the specified time is selected by a scheduler. The scheduler is a
service module that is called whenever a task in the Current state releases possession
of a processor.

The majority of real-time operating systems use a scheduling algorithm for man-
aging several real-time tasks that require real-time execution in a preemption multi-
tasking environment. If pre-emption scheduling is not done, the hard real-time prop-
erty cannot be achieved and, in conclusion, it is impossible to guarantee correct be-
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/* RTOS task management                 */
/*   - Create/Suspend/Resume/Delete a task  */

#include<conf.h>
#include<kernel.h>
#include<errno.h>

void main()
{
     int     err, tid;
     void  task1();
     struct timespec time;

     printf(”[1. Create a task by the name of task1.]\n”);
     tid = rt_create(task1, 1, INITPRIO+1, &err);
     if (err != RET_OK)
               printf(”*** Error: can’t create a task.\n”);
     time.seconds = 5;
     rt_delay(time, &err);

     printf(”\n[2. Suspend task1.]\n”);
     rt_suspend(tid, 0, &err);
     time.seconds = 2;
     rt_delay(time, &err);
     
     printf(”\n[3. Resume task1.]\n”);
     rt_resume(tid, 0, &err);
     time.seconds = 3;
     rt_delay(time, &err);

     printf(”\n[4. Delete task1.]\n”);
     rt_delete(tid, 0, &err);

     printf(”\n[------- End of test -----]\n”);
}

Fig. 9.5 Process management program example

havior of the system. The opposite type of scheduler to the pre-emption scheduler is
the non-pre-emption scheduler.

Using a non-pre-emption scheduler means that the operating system cannot stop
the execution of a task during execution. In this case, since stopping a task can only
be done by an interrupt, the design of the OS kernel is simple. However, because
the OS kernel cannot control the execution rights of a task, a programmer has to
plan the execution sequence of tasks in order to prevent a high-priority task from
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waiting for completion of a low-priority task. Therefore, in general, a real-time OS
does not use a non-preemption scheduler and the scheduling algorithms mentioned
in the following sections includes the pre-emptive property.

9.5.3.1 First-Come, First-Served Scheduling

As First-Come, First-Served scheduling is the simplest scheduling algorithm, it allo-
cates a resource according to the queue of requests. When the task is inserted into a
ready queue the control block of the task is connected to the end of the queue. When
the current task ends, the resource is allocated to the task at the head of the queue
and the allocated task is deleted from the queue. Consequently, system resources are
allocated by the sequence of the queue.

9.5.3.2 Time Slice

In the time-slice scheduling algorithm, time is split into intervals of the same length
and a task is allowed to operate during a certain amount of a time slice. The execution
sequence of tasks is typically determined by a round-robin method. After priority has
been assigned to each task according to the task characteristics, round-robin schedul-
ing is applied depending on the priority. Here, round-robin scheduling means that the
execution sequence of a task follows a pre-specified order and the task is carried out
only during the constant time interval. So, if the task finishes within its time interval,
the task is deleted from the queue. However, if the task does not finish within the
allocated time interval the task is added to the tail of the queue. The simplicity of the
time-slice scheduling algorithm is a merit. However, when tasks with different char-
acteristics are assigned to the same CPU, serious problems can occur. Therefore, this
scheduling algorithm is generally used for soft real-time systems and is appropriate
for background scheduling of regular tasks having long response times.

9.5.3.3 Priority

As a more complicated scheduling method, a method based on task priority can be
used. Priority is allocated to each task and the scheduler allocates the processor to
the highest priority task. If tasks have the same priority, they are executed by a First-
Come First-Served scheduling method. The priority specified by a programmer can
be changed while the task is being carried out.

In the case of pre-emptive scheduling, as soon as a task is inserted into the queue,
the priority of the inserted task is compared with the priority of the task being exe-
cuted. If the priority of the inserted task is higher than that of the currently execut-
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ing task, the inserted task pre-empts the processor. In non-pre-emptive scheduling,
the task is inserted at the head of the queue. A scheduling method where the pri-
ority can be changed during task execution is necessary, since forced pre-emption
of tasks being executed is not desirable. Therefore, unlike the fixed-priority/static-
priority scheduling where priority change is not permitted, dynamic-priority schedul-
ing, where priority change is possible during system execution has been introduced.

The fixed-priority scheduling minimizes the execution burden of a real-time
system and the Rate Monotonic (RM) algorithm is the most typical fixed-priority
scheduling algorithm. In this algorithm, the priority is static and tasks with shorter
periods are given higher priorities. The task with the highest priority that can be
run immediately pre-empts all other tasks. In the RM algorithm, each task has its
own static priority and the instance of each task is not given a new priority. Because
the static-priority scheduling consumes less computing power and implementation is
easier compared to dynamic-priority scheduling, it is widely used in real-time sys-
tems that require a deterministic guarantee with regard to response time.

In static-priority scheduling, only the task with highest priority may be executed.
To overcome this problem, the priority of the task being executed is linearly de-
creased by the scheduler when its current time slice is gone. Therefore, the executing
task comes to have lower priority than a waiting task. By using this method, it is cer-
tain that all tasks come to be executed. In consequence, dynamic priority assignment
is done at the end of each time slice.

As another dynamic-priority assignment method, the aging method is used. In the
aging method, the priority of a task becomes higher after each time slice. This method
prevents the task with low priority from waiting endlessly and allows the task with
lowest priority to be executed. In conclusion, because of the different initial priority,
a task with high priority is executed more frequently than a task with low priority.
Therefore, a task which has to be called frequently or promptly has high priority and
a task in which long response time is permitted has low priority.

9.5.3.4 Fixed Sample Time

In fixed-sample-time scheduling, time is not divided into fixed slices but is sliced
depending on the property of a task. This means that, in the case that the same time
slice is assigned to all the tasks, a task that has not completed in the fixed time may
be terminated without any result. To solve this problem, at the stage of defining a
task, an adequate time period is specified for each task and the task is scheduled by
using the individual software timer corresponding to the sample time.

9.5.3.5 Event-driven

The majority of scheduling methods assume periodic task service. However, event-
driven scheduling is used for irregular tasks. This method is appropriate in the case
when some task is fired by an event or data from a sensor.
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Figure 9.6 shows an example of the task scheduling function and dynamic-
priority assignment function. Task 1 and task 2 with the same priority are created
by rt create() and the scheduling function is stopped by rt lock() for some specific
time. After this time has passed, the scheduling function is resumed by rt unlock()
and the priority of task 1 is changed by rt priority().

/* RTOS task scheduling   */
/*   - Lock/unlock scheduling  */
/*   - Change priority of a task          */

#include<conf.h>
#include<kernel.h>
#include<errno.h>

void main()
{
     int     err, tid1, tid2;
     int     flag;
     void  task1(), task2();
     struct timespec time;

     printf(”[1. Create two tasks(task1, task2) which have the same priority.]\n”);
     tid1 = rt_create(task1, 1, INITPRIO+2, &err);
     if (err != RET_OK)
               printf(”*** Error: can’t create a task\n”);
     tid2 = rt_create(task2, 2, INITPRIO+2, &err);
     if (err != RET_OK)
               printf(”*** Error: can’t create a task\n”);

     time.seconds = 5;
     rt_delay(time, &err);

     printf(”\n[2. Lock scheduling.]\n”);
     flag = rt_lock();
     time.seconds = 3;
     rt_delay(time, &err);

     printf(”\n[3. Unlock scheduling.]\n”);
     rt_unlock(flag);
     time.seconds = 2;
     rt_delay(time, &err);

     printf(”\n[4. Let task1 have higher priority than task2.]\n”);
     rt_priority(tid1, INITPRIO+1, &err);

     printf(”\n[5. Delete task1.]\n”);
     rt_delete(tid1, 0, &err);

     printf(”\n[6. Delete task2.]\n”);
     rt_delete(tid2, 0, &err);

     printf(”\n[------- End of test -----]\n”);
}

Fig. 9.6 Programming example of task scheduling
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9.6 Process Synchronization

In a system based on multi-processing OS, all tasks can possibly be carried out si-
multaneously. Therefore, in order to guarantee the right execution sequence of tasks
it is necessary for the OS to provide a synchronization mechanism between tasks.

The semaphore, which was proposed as a task synchronization and mutual ex-
clusion method by Edsger Dijkstra in the 1960s, has been used in the majority of
multi-tasking OS. Mutual exclusion, which enables access to a shared resource when
a specific condition is met, will be described in the next section and in this section
details of semaphores for task synchronization will be addressed.

9.6.1 Semaphores

Originally, the term ‘semaphore’ meant a railroad signal to indicate the change of a
railroad line. Determining the usage of a shared resource according to the status of
a semaphore is similar to determining whether a train goes or waits according to a
railroad signal.

A semaphore can be changed only by P and V actions and is a variable with only
integer values. Each process has a semaphore variable and whenever a process wants
to access the shared resource, the value of the semaphore variable has to be checked.
If the semaphore variable is equal to one, a process can access the shared resource. If
the semaphore variable is zero, access to the shared resource is prohibited. In other
words, a semaphore is a special variable that indicates whether a process can access
the shared resource. If a semaphore variable is greater than zero this indicates that
access to the shared resource is possible. Before access to the resource, a process
records the usage of the resource via a P action. After using the resource, a process
increases the value of the semaphore connected to the next process by one via a V
action and passes access rights to the next process.

In conclusion, the behavior of the semaphore can be summarized as follows.
The P action decreases the semaphore variable by one and is performed by calling

WAIT(semaphore variable). By a P action, whether a particular process can access a
shared resource is checked. If the semaphore variable is greater than one, the process
that connects to the semaphore variable can access the resource and the P action
decreases the semaphore variable by one before access.

The V action increases the semaphore variable by one and is performed by calling
SIGNAL(semaphore variable). It gives the access right to the next process. After
increasing the semaphore value by one, a process connecting to the semaphore can
access the resource during its scheduled execution.

A semaphore whose value is either 0 or 1 is called a “binary semaphore” and a
semaphore whose value can be greater than one is called a “counting semaphore”.
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9.6.2 Using Semaphores

In order to use semaphores, a semaphore variable has to be created for each task
and assigned to its individual task. In this section, in order to show synchronization
by semaphore variables, two examples where three tasks exist, named ‘A’, ‘B’, ‘C’
respectively, are shown.

Figure 9.7 shows the first example. The state of three tasks is automatically moved
to the execution state and ready state by the OS scheduler. In this example, syn-
chronization between the tasks is not activated and the execution result is arbitrarily
generated.

In the second example, the synchronization between the three tasks works using
semaphore variables and, in conclusion, ‘A’, ‘B’, and ‘C’ are displayed in turn, as
shown in Fig. 9.8. The semaphore variables are generated for each task by screate(),
and “printa = screate(1)” is declared first in order to start the task corresponding to
the “printa”, semaphore variable. After this, tasks are created and moved to the ready
state. Task 1 has the right to run because the semaphore variable “printa” is equal to
one and the process displays ‘A’. After displaying ‘A’, Task 1 signals the semaphore
variable “printb” corresponding to the next execution task. Because “printb” is sig-
naled by Task 1, Task 2 which is in wait state moves to execution state and dis-
plays ‘B’. Next, Task 2 signals the semaphore variable “printc” and execution right
is passed to Task 3. In conclusion, each task is executed one after the other using the
semaphore mechanism and the execution result is as shown in Fig. 9.8.

9.6.3 Events and Signals

The synchronization mechanism using a semaphore is typical. However, it is not true
that this method can be applied for all cases. In addition to a semaphore, an event or
signal is widely used for implementing the synchronization mechanism.

The event method uses an event flag and is an appropriate mechanism for realizing
synchronization when multiple events occur. The event flag that corresponds to a
particular event is located in the event memory. So, if a particular event occurs the
corresponding event flag is turned on. As soon as the event flag is turned on, the task
that is waiting for that event moves into the ready state. The event flag plays the role
of passing control and causes the OS to activate the appropriate event handler.

The signal method is slightly different from the event method and works like an
interrupt. If a particular signal is fired, the task currently running is stopped and the
task corresponding to the signal is called. This is very similar to the way that the
interrupt service routine (ISR) is activated by an interrupt.
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/* Coordinated by scheduler for displaying ‘A’, ‘B’, ‘C’ */

#include<conf.h>
#include<kernel.h>

void main()
{
     int     proc1(), proc2(), proc3();
    
     printf(”\n Display ‘A’, ‘B’, ‘C’\n”);
     printf(”    Output....\n\n“);
     rt_resume(rt_create(proc1, INITSTK, INITPRIO, “proc1”, 0, 0) );
     rt_resume(rt_create(proc2, INITSTK, INITPRIO, “proc2”, 0, 0) );
     rt_resume(rt_create(proc3, INITSTK, INITPRIO, “proc3”, 0, 0) );
}

proc1()
{
     int i;
     for (i = 0; i < 1000; i++) {
               printf(”A”);
     }
}

proc2()
{
     int i;
     for (i = 0; i < 1000; i++) {
               putc(CONSOLE, ‘B’);
     }
}

proc3()
{
     int i;
     for (i = 0; i < 1000; i++) {
               putc(CONSOLE, ‘C’);
     }
}

Output result

Display ‘A’, ‘B’, ‘C’  
Output....  
AAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBB 
BBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCAAAAAAAAAA  
AAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBCCCCCCCCCCCCC

Fig. 9.7 Programming example without the synchronization mechanism
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/* Coordinated by semaphore for displaying ‘A’, ‘B’, ‘C’ */

#include<conf.h>
#include<kernel.h>

void main(int argc, int argv)
{
     int     proc1(), proc2(), proc3();
     int     printa, printb, printc;
     printa = screate(1);
     printb = screate(0);
     printc = screate(0);
     printf(”\n Display ‘A’, ‘B’, ‘C’ by turns using semaphore and three process \n”);
     printf(”    Output....\n\n“);
     resume(create(proc1, INITSTK, INITPRIO, “proc1”, 2, printa, printb) );
     resume(create(proc2, INITSTK, INITPRIO, “proc2”, 2, printb, printc) );
     resume(create(proc3, INITSTK, INITPRIO, “proc3”, 2, printc, printa) );
}

proc1(printa, printb)
{
     int i;
     for (i = 0; i < 10; i++) {
               wait(printa);
               printf(”A”);
               signal(printb);
     }
}

proc2(printb, printc)
{
     int i;
     for (i = 0; i < 10; i++) {
               wait(printb);
               putc(CONSOLE, ‘B’);
               signal(printc);
     }
}

proc3(printc, printa)
{
     int i;
     for (i = 0; i < 10; i++) {
               wait(printc);
               putc(CONSOLE, ‘C’);
               signal(printa);
     }
}

Output result 
Display ‘A’, ‘B’, ‘C’  
Output....  
ABCABCABCABCABCABCABCABCABCABCABCABCABCABCABC
ABCABCABCABCABCABCABCABCABCABCABCABC.........................

Fig. 9.8 Programming example of task synchronization by using semaphores
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9.7 Resources

9.7.1 System Resources

A resource means not only hardware such as a printer or a disk but also things
that the task being executed accesses such as variables in main memory. In multi-
programming, competition between tasks for the use of resources sometimes occurs.
If this competition is not effectively managed, a system may work abnormally or it
may be terminated. Therefore, concern about resource protection is one of the key
issues in multi-programming theory.

As traditional examples of resource protection, airplane ticket reservation systems
and bank accounting systems are often given. Before a flight, the seats of an airplane
are located in the memory of the ticket reservation system. In order not to allocate
the same seat to more than one customer when tickets are issued at the same time,
the ticket reservation system must protect the seats resource. If different tasks use
the same variables and modify them without the pre-specified sequence, unexpected
problems can result.

For example, suppose that two tasks read and modify the same variable. If an
interrupt is fired as soon as one task reads the variable, the other task can modify
the variable while the task is in wait state. The former task cannot know that the
variable has been changed and resumes execution based on the changed variable. In
a multi-processing environment, a task can be pre-empted at any time and resume
at any other time. In this case, more than one task can access the same resource
without any restriction. Therefore, the variable to which access by multiple tasks
is allowed has to be regarded as a resource whose protection is necessary and an
adequate protection mechanism is needed to protect this variable. Accordingly, to
avoid competition, resource allocation should follow a pre-specified mechanism.

The fundamental theme for resource protection is that the resource that is occu-
pied by some task should not be changed by another task. The most difficult thing for
resource protection in a multi-processing environment is that any task can interrupt
any other task. The programmer cannot control and detect the time of the interrupt.
Therefore, the first method to guarantee resource protection is to prohibit interrupts
while the resource is occupied by another task. This is a way to prohibit the proces-
sor’s response due to interrupt by force. This can be accomplished by implementing
a “critical section”, a series of instructions or blocks that cannot be stopped by an-
other task. Resource protection can be guaranteed by disabling interrupts before the
task enters the critical section and enabling interrupts after the task leaves the critical
section.
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9.7.2 Mutual Exclusion

It is possible to prevent system failure by allowing only one task at a time to have
access to a common variable. While only one task is using the common variable, the
other tasks that want to access the same variable wait for the completion of the task.
After the task finishes the usage of the variable, one of the waiting tasks is allowed
access to the variable. Allowing only one task to have access to a common variable
among the tasks that want to access it is called the “mutual exclusion mechanism”.

When some task has access to particular common data, the task is said to be in
its critical section. Each task has a code segment called the “critical section”. In the
critical section, the task can change common variables, update tables, and read and
write files. Therefore, when one task is in its critical section, the mutual exclusive
mechanism is required not to allow other tasks to execute their critical sections. A
progress mechanism and bounded waiting condition for managing the tasks that need
to have access to their critical sections is required. If a task stops in its critical section,
it is necessary for the OS to allow another task access to its critical section by freeing
the mutual exclusive condition.

Figure 9.9 shows a mutual exclusive mechanism using a semaphore when three
processes share one resource.

Process 1 Process 2 Process 3

Resource

SEM 1

SEM 2

SEM 3

Semaphore
Access
resource

wait(sem1)

signal(sem3) wait(sem3)
1

2
3 4

Fig. 9.9 Operating order of mutual exclusive mechanism using a semaphore

If Process 1, Process 3, and Process 2 are executed one after the other, the behavior
is as follows:

1. When the OS scheduler puts Process 1 in execution state, Process 1 checks the
semaphore variable SEM1.

2. If the value of SEM1 is more than 1, Process 1 accesses the resource.
3. After finishing usage of the common resource, SEM3 is signalled for Process 3

that will use the common resource.
4. If Process 3 is started by the scheduler, Process 3 checks the semaphore variable

SEM3 and has access to the variable.



336 9 CNC Architecture Design

The method of realizing mutual exclusivity based on semaphores as described
above is very similar to the semaphore-based synchronization method shown in
Fig. 9.8. The mutual exclusive method can be realized by Wait() for waiting for the
semaphore to access the resource and signal() for signalling the semaphore to allow
another process access to the resource after completion of the usage of the resource.

9.7.3 Deadlock

In a multi-tasking programming environment, multiple tasks compete to use limited
resources. If it is impossible to use a resource when a task requests that resource,
the state of the task becomes the waiting state. The case when the task state does
not change because the resource requested by the task in waiting state is occupied by
other tasks in waiting state can occur. For example, let us suppose that the system has
one printer and one tape drive, task 1 occupies the tape drive, and task 2 occupies the
printer. If task 1 requests the printer and task 2 requests the tape drive, the execution
of the two tasks is stopped until one or other frees occupation of the printer or the
tape drive. The case when a system cannot continue execution because of this sort of
occurrence is called deadlock. However, since the majority of operating systems do
not provide a function to prevent deadlock, it is necessary for a programmer to exer-
cise caution. Practically, it is possible to prevent deadlock by finding the occurrence
condition of the deadlock and avoiding this condition. Theoretically, the necessary
and sufficient condition of the deadlock occurrence can be summarized as follows:

Mutual exclusion: at least one resource is governed by a non-sharing method. This
means that only one process can use a resource at one time. If another process re-
quests the resource, the execution of the requesting process is delayed until the re-
source is freed. In conclusion, only one process can use a resource at any specific
moment.

Hold and Wait: One process should occupy at least one resource and this process
must wait to occupy additional resources held by another process.

Non-Pre-empted allocation: It is impossible to pre-empt the resource. The occupied
resource cannot be freed by force and can only be freed after the process holding the
resource is terminated. Therefore, the process to which the resource is allocated is
the only one able to free the resource for other processes.

Circular wait: In the case when a set of processes, P0,P1, . . .Pn, are in waiting status,
P0 requests the resource that is occupied by P1, P1 requests the resource occupied by
P2, Pn−1 requests the resource held by Pn, and Pn requests the resource occupied by
P0.

Since deadlock occurs when all the above four conditions are met, the deadlock
condition can be prevented by not allowing at least one condition among the four
conditions. Accordingly, as a practical method to prevent the deadlock, the first thing
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is to ensure that all necessary resources are available before the start of a process.
The second is that the process frees all resources and waits if the requested resource
cannot be promptly allocated when the process occupies the same resources and re-
quests another resource. The third is that a linear sequence number is assigned to all
resources and each process can only request resources having sequence numbers in
ascending order. Therefore, a process that has to use multiple resources simultane-
ously asks for a high-priority resource and, thereafter, a low-priority resource.

9.8 Inter-process Communication

A communication mechanism is necessary for each process to access particular data
during parallel execution or to send data to another process. The communication
mechanism should not have an influence on the transmitted data. Data and commu-
nication protocols have to be defined in each process and have to be independent of
the specific communication method. In a broad sense, the synchronization problem
mentioned in earlier sections can be defined as a problem of inter-process communi-
cation.

As methods to realize the inter-process communication, shared memory and mes-
sage passing can be used. These complement each other and they can be simultane-
ously used in one OS.

9.8.1 Shared Memory

For inter-process communication via shared memory, global variables where pro-
cesses can read and write can be considered. However, because usage only of global
variables may cause data clashes when more than one process accesses the global
variables simultaneously, it is essential to use critical sections with this method.
A critical section can be realized by using a synchronization mechanism such as
a semaphore. This method is simple and fast. However, when a high-priority task
pre-empts global data from a low-priority task, the global data can be distorted. In
order to prevent this problem a data buffer is used. The buffer between the task that
generates data and the task that uses data is called the “damper”. In this case, the
buffer can be specified by various data structures such as a stack and unstructured
data.

The shared memory has to be located at an area whose address in the memory
map is known. This is not difficult for assembly languages. However, in the case of
high-level languages that cannot access memory directly, additional techniques are
required for implementing this.
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9.8.2 Message System

A message system is a method that enables process synchronization and data ex-
change without shared variables. Basically, the communication function between
processes provides two operations; the first is SEND for sending a message and the
other is RECEIVE for receiving a message. A method is needed to refer to each other
for communication between processes. There are two methods for this.

Direct Communication: The process that wants to send or receive a message spec-
ifies the name of the receiver or sender. For this, it is necessary to know the name of
the corresponding process.

SEND (P, message): send message to P.
RECEIVE(Q, message): receive message from Q.

Indirect Communication: the message is transmitted via a mail box. The mail box
has a unique identification number and when two processes share the same mail box
communication is possible.

SEND (A, message): Send message to mail box A.
RECEIVE(A, message): Receive message from mail box A.

Sending a message to a mail box is a simple task. The message is copied into the
specified mail box and then the first in-message is copied into the receiver’s message
data structure when the receive function is called. After reading the message, it is
deleted from the mail box.

A mail box does not have an individual structure and is located in memory or on
disk. It exists when the system is on and activated. If a mail box exists on disk, it
is regarded as a temporary file and is deleted when the system is turned off. A mail
box does not have a unique identifier or name. When it is created, it is distinguished
by a logical identifier. All processes that use a mail box use the logical identifier to
distinguish it.

Figure 9.10 shows an example of a message-passing program. If proc1 and proc2,
the processes created by the main program, receive a message that is not zero, they
write out “A” and “B” respectively and send a message that is not zero. As a result,
since synchronization of the two processes is realized, texts “A” and “B” are written
out successively.

In another method, which is similar to using a mail box, a queue is used. A queue
can store more than one message and can be implemented as an array of mail boxes.
As a practical implementation method, a ring buffer is used in order to receive service
requests for a device and queues at the head and tail of the ring buffer are used in
order to control access to the ring buffer.

As other communication methods, the rendezvous method and monitor method
are used. The rendezvous method is a method for synchronization and communi-
cation between tasks in the ADA programming language. One task requests a ren-
dezvous and the other task declares that it is ready to receive. The task that requests
the rendezvous has to know the name of the task called. However, it is not necessary
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/* Display ‘A’ and ‘B’ one by one utilizing message passing method */

#include<conf.h>
#include<kernel.h>

void main()
{
     int     proc1(), proc2();
     printf(”\n Display A and B one by one by utilizing message passing method \n”);
     printf(”    Output....\n\n“);
     pid1 = create(proc1, INITSTK, INITPRIO, “proc1”, 0, 0); /* create process 1 */
     resume(pid1); /* make process 1 READY */
     pid2 = create(proc2, INITSTK, INITPRIO, “proc2”, 0, 0);
     resume(pid2);
}

proc1()
{
     int i;
     int msg1, msg2;

     for (i = 0; i < 10; i++) {
               /* receive message, if message is not received, process1 turns to wait state */
               msg1 = receive();
               if (msg1 != 0) printf(”A”);
               msg2 = 1; /* assign nonzero value for sending to process2 */
               send(pid2, msg2);
     }
}

proc2()
{
     int i;
     int msg2 = 0, msg1 = 5;
     for (i = 0; i < 10; i++) {
               msg2 = receive(); /* receive message from process1 */
               if (msg2 != 0) printf(”B”);
               send(pid1, msg1);
     }
}

Fig. 9.10 Programming example utilizing a message for inter-task communication
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for the task called to know the name of the caller. The concept of the rendezvous
method is the same as that for a subroutine call.

The classical method for resource protection and communication between tasks
is the monitor. The monitor consists of a reserved data region (monitored region)
and a process that has the exclusive right to manage the reserved data region. Other
processes do not have direct access to the monitored region and have to call the
monitor process. The monitor provides the service to only one process at a time.
Using this mechanism, the monitor can guarantee that the execution of a process
completes before another process has access to the same data region.

9.9 Key Performance Indices

A real-time OS supports pre-emption multi-tasking. The multi-tasking ability en-
ables effective resource management as well as parallel execution of processes or
tasks. For efficient multi-tasking, it is essential to increase the response character-
istics of the OS by reducing the context switching time. Furthermore, a real-time
OS can predict the required time for running tasks in order to realize the real-time
scheduling and synchronization mechanism. In addition, it is necessary to know the
characteristics of the interrupter, such as interrupt latency, which is the time spent
to resume a task after an interrupt has been fired, the maximum elapsed time of the
system call, etc.

Knowledge of the above performance indices makes it possible to predict the user
application’s execution and makes it easy to design the process schedule.

In the following sections, the key performance indices of a real-time OS will be
addressed. In general, the terminology and definition of these indices are slightly
different depending on the kind of OS. In this book, the performance indices that are
typically used will be described.

9.9.1 Task Switching Time

Task switching time means the average time spent to switch between two tasks with
the same priority. As shown in Fig. 9.11a, it is supposed that all tasks have the same
priority. Task switching is done when real-time software uses the time-sharing algo-
rithm to carry out tasks with the same priority. Task switching time is used for storing
and restoring context. And it depends on the efficiency of control data structure, pro-
cessor architecture, and instruction set.
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9.9.2 Context Switching Time

The context switching time denotes the time spent to start task B when task A with
low priority is being executed, as shown in Fig. 9.11b. For the context switching time,
the context of the pre-empted task is stored, the context of the new task is loaded, and
the new task is scheduled. Note that the task switching time denotes the time spent
to switch tasks with the same priority, and that the context switching time is different
from the task switching time.

Task A

Task B

Task C

dt1 dt2 Time tcs

Low-priority
task A

High-priority
task A

Time

Fig. 9.11 Definition of Task switching time (a) and context switching time (b)

9.9.3 Semaphore Shuffling Time

The semaphore shuffling time denotes the time delay from when some task frees
the semaphore to when the task waiting for the semaphore is activated. Because
the semaphore shuffling time itself represents a computing burden related with the
mutual exclusion, the semaphore shuffling time is one of the key performance indices
of real-time systems.

Figure 9.12 shows the mechanism to pass a semaphore when more than one
task is competing for the same resource. Task A is being executed and requests the
semaphore corresponding to the resource in order to access the resource at t1. At t2,
Task A is stopped and Task B starts. At t3, Task B requests the semaphore to access
the resource that is occupied by Task A. Because Task B cannot be continued, Task B
is stopped and Task A is activated again. At the end of execution, t4, Task A frees
the semaphore. As soon as the semaphore is freed, the scheduler resumes Task B and
Task B receives the semaphore. Mutual exclusivity based on a semaphore is the most
effective method of allowing only one task to access a particular resource.

9.9.4 Task Dispatch Latency Time

The task dispatch latency time is a frequently used performance index for evaluating
real-time systems. In a real-time system, a real-time task waits for a particular event
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Fig. 9.12 Semaphore passing mechanism

to happen. When the interrupt occurs, the task being executed with a low priority
should be stopped quickly and the real-time task activated. The task dispatch latency
time denotes the time spent to start a task from the interrupt service request. The task
dispatch latency time is highly related to the interrupt latency time and the context
switching time.

Figure 9.13 shows the interrupt mechanism to activate an interrupt service routine
(ISR) from the point of interrupt and to come back to the task status before the inter-
rupt. The interrupt response time consists of the delay time related to the hardware
and software. The hardware latency (delay time) is defined as the time span from
detection of an interrupt to acknowledgement of it by a processor. If a processor
receives the interrupt signal, the OS has to wait for completion of the instruction cur-
rently being executed. This delay time is defined as an interrupt overhead (IO). After
an IO, the system needs the time for interrupt latency, which an interrupt dispatcher
manages, for the whole interrupt to be worked out.

In conclusion, during the interrupt response time, which is composed of the above
three steps, the system is ready to execute an interrupt service routine by acknowl-
edging an interrupt to a processor and storing the parameters or context of the sys-
tem. After the interrupt response time, the interrupt service routine (ISR) is invoked
to handle the requirement of the interrupt. When the ISR has completed its work,
a scheduling latency is spent for the OS to reschedule and switch the context to the
task before the interrupt. Therefore, the scheduling latency time is defined as the time
span from completion of the ISR to activation of the first instruction of a scheduled
task.

Figure 9.14 shows the worst case example of the task dispatch latency time exe-
cuting in LynxOS (one of the widely used RTOS). It includes several behaviors and
delay times consumed, such as issuing an interrupt, activating multiple ISRs, and
resuming the task after the interrupt.

Table 9.1 shows the comparison of the performance index of three kinds of a
real-time OS; Hyperkernel 4.3 (Imagination), INTime 1.2 (Radisys), and RTX4.1
(VentureCom). They were tested on a PC with a Pentium 200MHz CPU. (Note:
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Fig. 9.13 Definition of task dispatch latency time
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Fig. 9.14 Example of a task dispatch latency time

Because this table only intends to show examples of the performance index, the
actual system is not identified.)

The performance index shown in the above table is described by an average value
and a maximum value obtained from thousands of tests. When we select the right
real-time OS, the maximum value, meaning worst case, should be considered rather
than the average value. In order to design the reliable and deterministic system that
is required to meet the hard real-time property, the OS with lower maximum value is
preferred. From this point of view, system B is a good operating system. Of course,
it is not always to be concluded that the OS with the lowest performance index is
the best. According to the characteristics of the system, various performance indices
should be considered.

According to the above-mentioned standards and the requirements for a real-time
OS, Windows NT (Microsoft), widely used as a PC OS, is adequate as a general-
purpose OS but is not adequate for real-time OS. Firstly, Windows NT is able to sup-
port multi-threading but is not suitable for real-time scheduling because it does not
provide enough priorities and it is impossible to define clearly a tiny time slice. For
example, Windows NT provides a good hardware interface. However, since Pentium
power management interrupts the system for an unpredictable time, time analysis of
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an application is very difficult and development of a reliable system is impossible.
Also, it is impossible to use a small real-time clock pulse because Windows NT does
not provide a tiny programmable timer. Besides, Windows CE 2.0, which is widely
used as an embedded system OS, is not suitable for medium-sized or large-sized sys-
tems. It is only useful for small systems having a long performance index latency,
and few allocable priorities.

Table 9.1 Comparison of performance indices of three RTOS (times: μs)

Performance Index System A System B System C
Task Switching Avg. 5.47 4.68 2.64

Latency Max. 23.13 10.68 5.73
ISR Avg. 11.26 8.78 7.66

Latency Max. 19.23 14.52 25.68
Scheduling Latency Avg. 25.95 4.73 6.36

Max. 39.0 10.14 32.25

In addition to the above-mentioned operating systems, various real-time OSs, such
as CHORUS/OS, IRIX, LynxOS, OS-9, p-SOS, QNX, RT-mach, SORIX 386/486,
VRTX, and VxWorks have been used. However, the source code of the application
developed for one particular OS cannot be reused on a different OS, since each OS
has its own code format, such as API and system calls. To overcome this compati-
bility problem, POSIX 1003.4, which is based on POXIS, was established, but it can
be expected that a lot of time will be needed for perfect standardization.

9.10 Hardware and Operating Systems

In the case of the design of real-time systems, one of the key considerations is how
to integrate the hardware components for equally distributing task load and how to
operate the real-time OS to manage hardware resources. Therefore, it is important
to define a multi-processing hardware architecture allowing combination of multiple
processors for handling particular tasks, input/output processors and the operating
system of a multi-processing system.

9.10.1 Architecture of Multi-processing Hardware

As the hardware architecture for multi-processing systems, a bus structure has been
widely used. Bus structures are classified into two types; one is the common bus
type, where one bus is shared by multiple processors, and the other is the standard
bus type, where a computer unit with a heterogeneous local bus is connected to a
standard bus (e.g., Multi-bus and VME bus).
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Fig. 9.15 Architecture of multi-processing hardware having a bus structure

For the sake of explanation, let us suppose that each bus type is applied to the
CNC system. The common bus type shown in Fig. 9.15a is a structure where multiple
processors, carrying out tasks such as PLC, MMI, interpreter, and interpolator, are
connected via one bus, using the common memory and having their own individual
input/output interfaces. It can be called a “closed” architecture, where system scaling
is very difficult.

The architecture shown in Fig. 9.15b implements several processor units execut-
ing NCK, PLC, and MMC and all units are connected via a standard bus. Accord-
ingly, expansion of such a system is easily possible only by adding process units for
particular tasks to the standard bus. In this architecture, each processor unit commu-
nicates with the other units via a common memory module.

As mentioned above, in the bus-type architecture only one communications chan-
nel is provided to processors, memory modules, and input/output devices. In this
simple architecture, the common bus works basically as a passive device and com-
munication between devices is controlled by the devices own bus interface. First, the
processor that wants to transmit data or input/output to the processor has to check
whether the bus and the counter device can be used. It must then transmit the data af-
ter informing the device how to handle the transmitted data. The device that receives
the data has to know that the message from the bus is its own. It must also be able to
recognize the message and perform particular actions according to the message.

However, the bus-type architecture has serious drawbacks due to having only one
communications channel. If the bus does not work the entire system does not work.
Also, the communication bandwidth of a system is restricted by the bus bandwidth.
In addition, as the system becomes busy, the competition for the bus grows and the
efficiency of the bus decreases drastically. Therefore, bus-type architecture is eco-
nomical, simple, and flexible, but the application of this architecture is restricted to
small-sized multi-processing systems due to the limitations of the bus.

As hardware architecture for multi-processing, a distributed architecture can be
considered instead of the bus-type architecture. The distributed architecture is re-
garded as a loosely coupled type of architecture where more than one individual
distributed computer system is integrated by a communication line, as shown in
Fig. 9.16. Each system has its own operating system and memory and is operated
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Fig. 9.16 Architecture of multi-processing hardware having a distributed structure

individually. Only if necessary, does each system communicate with another system.
The distributed system can access files located in another system via a communica-
tion line and a busy system can pass tasks to another system that is less loaded. In
this architecture, since the communication speed has a large influence on the perfor-
mance of the entire system, the design should allow that tasks that need high-speed
communication are always executed on the same processor taking into consideration
the balanced distribution of tasks among processors.

As shown in Fig. 9.16a, NCK and PLC which need high-speed communications
are executed on the same unit. In contrast, the MMI unit, whose communication data
is relatively small, communicates with the NCK/PLC unit via a high-speed serial
communication line. Figure 9.16b shows another distributed architecture where the
NCK, PLC, and MMI tasks are executed on each unit and combined using a ring-type
high-speed communication line.

In recent times, the sustained development of microprocessors makes it possi-
ble for only one processor to carry out many tasks that could only be performed by
multiple processors in the past. Accordingly, the old multi-processing system archi-
tecture was replaced by an architecture where one processor performs multiple tasks,
or threads, which denote the processes that were executed individually by multiple
processors. As a system with one processor is a system that maximizes usage of the
processor resource, this has an advantage in terms of cost. However, it has the dis-
advantage that some trouble results in the malfunction of the whole system because
one processor performs all the tasks. Also, because all the tasks of the CNC system
are performed by one processor and memory, it is necessary to use a highly reliable,
hard real-time OS that can guarantee regular execution of tasks within the allowable
time and manage perfectly shared resources.
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9.10.2 Operating System Configuration

Not only integration of hardware for multi-processing but also configuration of op-
erating systems must be considered. The configuration method for allocating and
managing resources, protecting resources, preventing deadlocks, terminating abnor-
mal execution, balancing input/output load, and balancing process load should be
defined together with the configuration method of the hardware. As configuration
methods for multi-processing operating systems, there are the master/slave method,
separate executive method, and symmetrical method.

In the master/slave architecture, the main processor only executes the OS and
slave processors perform user applications, as shown in Fig. 9.17a. In this method,
when it is necessary for the OS to handle a process that was executed by a slave pro-
cessor, the OS generates an interrupt and waits for the processor’s interrupt handling.
Depending on the number of slave processors and how often a slave generates an in-
terrupt, the size of the waiting queue may be different. Although the slave processor
has no task to run, it must wait for the master processor’s interrupt. If the slave pro-
cessor performs only short and simple tasks, the master processor will have a large
burden. If the main processor cannot respond to the requests of slave processors
quickly, the capability of the slave processor is wasted. As a main processor plays
the role of general-purpose processor, it performs not only arithmetic operations but
also input/output operations while the slave processor only performs arithmetic oper-
ations. Therefore, slave processors can effectively perform arithmetic operations but
because input/output operations are done only through the master, a slave processor
cannot perform these.

In terms of reliability, if one slave processor does not work, the computing power
is decreased by some amount but the whole system continues to work. However, if
the main processor fails, the system can do no input nor output. Therefore, the main
drawback of the master/slave architecture is that processors are not equal and only
the main processor manages input/output operations. In conclusion, since malfunc-
tion of the main processor makes execution of the system impossible, the reliability
of this architecture is low but it is easy to implement this architecture. Therefore,
this architecture is suitable for systems where the computing burden is well known
and the main processor can manage task scheduling accurately. It is appropriate for
asymmetric systems where the performance of the main processor is superior to that
of the slave processor.

As shown in Fig. 9.17b, in the case of separate executive architecture, each pro-
cessor has an individual OS and interrupts from each processor are handled by the
processor responsible. The data about the whole system is stored in a table and ac-
cess to the table should be controlled based on the mutual-exclusivity mechanism. A
task that is allocated to a particular processor is executed on that processor until the
task is finished.

Because this architecture is more reliable than the master/slave architecture, the
malfunction of one processor does not result in a halt of the entire system. However, it
is not easy to restart the malfunctioning processor and synchronize it with the whole
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Fig. 9.17 Architecture of multi-processing software

system. Since it is not necessary for processors to help each other for execution of
processes, other processors can be idle even when another processor is busy.

Although the symmetrical architecture shown in Fig. 9.17c is the most complex
structure, all processors are at the same level. One operating system can utilize all
memory and I/O devices of all processors and can distribute the workload more ef-
fectively. This type is the most reliable. A task working on one unit can be transferred
to another unit without modification, and all processors of each unit can cooperate to
execute a special task. Further, it can use the resources effectively because a reason-
able load can be assigned according to the workload of the processors.

9.10.3 CNC System Architecture

As mentioned in the previous section, the configuration of multi-processing sys-
tems varies and there is a variety of advantages and disadvantages according to the
architecture. Some commercial CNC systems are configured based on the above-
mentioned architectures, while other systems use modifications of those architec-
tures or combinations of them. Figure 9.18 shows one example of the architectures
of commercial CNC systems using a standard bus.

The architecture shown in Fig. 9.18 is a typical platform that was developed for
CNC systems by universities and research centers. The architecture in Fig. 9.18 is
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Fig. 9.18 Example of CNC systems having a standard bus

based on the common bus, being the standard VME bus, and is a master/slave type
that consists of a main processor, controlling the whole system, and slave processors
and it is possible to add various kinds of slave processor. In particular, a real-time
master that manages the system entirely is connected with slave processors via a
VME bus. As slave processors, there are the DSP units for executing interpretation
and interpolation, the tool monitoring unit for detecting tool status, the adaptive con-
trol unit for performing adaptive algorithms, the data acquisition unit for obtaining
sensor data, and a common memory unit. It was designed so that, if necessary, a
CAD/CAM processor unit for generating toolpaths can be added.

Fig. 9.19 Commercial CNC system having a bus system

Figure 9.19 shows CNC systems using a bus system; the FANUC 0 series and
Siemens 840C control units. The FANUC 0 series is famous for CNC systems, with
simple functions and was developed based on the common bus. The processors that
are dedicated to PLC, NCK, and MMI are individually connected via FANUC’s own
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bus and are managed by only one OS. However, this architecture is of closed type
because it does not allow the user to add new functions and hardware. Therefore, only
the functions implemented by the CNC maker are usable. It also makes it impossible
to implement machine tools with advanced functions. To overcome this problem,
recently open CNC system architectures have been developed in terms of hardware
and software architecture.

The Siemens 840C has an architecture where process boards for NCK, MMI,
and PLC are connected via Siemens’ own bus in a backplane. This is similar to the
architecture of the system based on the VME bus. The 840C is a PC system where
NCK and PLC boards use Siemens’ own bus as a local bus and the MMI board uses
an ISA bus. In this way, it is easy to add software that operates on a PC but it is
impossible to add new functions to the NCK and PLC. As an operating system for
the 840C, both DOS, a non real-time OS, and FlexOS, a real-time OS, are used.

Fig. 9.20 Commercial CNC system having a loosely coupled system

In the case of the Siemens 840D, the processors dedicated to PLC and NCK are
connected via a local bus and carry out real-time control based on a unique OS. The
processor that is dedicated to MMI uses an operating system, Windows 3.1, being a
non-real-time OS. The NCK and PLC boards are connected through high-speed com-
munication. The FANUC 150i is similar to the 840D but the main difference between
them is the communication method. In the case of the 840D, all hardware compo-
nents are connected via a ring-type communication line, as shown in Fig. 9.16b. In
the case of the FANUC 150i, the NCK/PLC board and the MMI board are connected
by high-speed serial communication. Since a non-standard communication method
is applied to them, they cannot be connected with third-party systems.

9.11 Summary

A CNC system is a real-time system where NCK, MMI, and PLC should be executed
within a specified time. In order to design a CNC system that guarantees hard real-
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Fig. 9.21 Coupled commercial CNC systems

time property, a harmonized relationship between the functionality of real-time OS
and the architecture of hardware and software has to be considered.

The kernel, being the core component of a real-time OS, provides the process
manager for priority management and context switching, memory manager, pro-
cess coordinator for controlling processes, a synchronization mechanism for avoid-
ing clashes between processes, and communication management functions for con-
trolling communication between processes. Accordingly, the system designer has to
implement a method for operating the real-time system using the process manage-
ment, scheduling functions, system resource protection mechanisms, synchroniza-
tion mechanisms between processes and communication mechanisms provided by
system calls or the API of a real-time OS.

The performance index of a real-time OS can be defined in various ways. How-
ever, the task switching time between two tasks having the same priority and the
context switching time spent to switch between the execution of two tasks are re-
garded as key performance indices of a real-time OS. The semaphore shuffling time,
being the time delay from when some task frees the semaphore to when the task
waiting for the semaphore is activated and the task dispatch latency time, being the
time spent to start a task from the interrupt service request, are also regarded as key
performance measures. Though, as the delayed times of various performance indices
decrease with advancements in micro processor technology, the importance of taking
the performance indices into consideration has decreased.

In terms of the design of a real-time system, a necessary consideration is how the
hardware elements are configured, how they are connected, and how OSs are config-
ured. As the configuration structure of hardware, there are two types; one is based
on the bus system such as common bus and standard bus. The other is based on the
communication interface such as serial communication and ring network. Moreover,
as the configuration of OSs, there are master/slave configuration, separate executive
configuration, and symmetric configuration.
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In conclusion, in order to implement a real-time system, an OS that can pro-
vide multi-tasking, synchronization mechanism, priority-based scheduling, and pre-
emption function should be selected. Also, according to the type, the execution time,
and the unique characteristic of a task, the architecture of the software should be de-
signed. In addition to designing the architecture of the software, the architecture of
hardware should be designed in parallel.



Chapter 10
Design of PC-NC and Open CNC

Recently, industrial controllers based on PC hardware seem to have replaced con-
ventional controllers based on a closed hardware structure. We will discuss the de-
sign issue of PC-NC running the NC functions described in other chapters on a per-
sonal computer (PC). The hardware architecture, software model, and communica-
tion mechanism for building PC-NC will be addressed. In particular, Soft-NC, where
a single processor is used and all functions of PC-NC are implemented as software
tasks, will be described. In addition, an open CNC architecture supporting openness
of H/W and S/W of CNC systems will be discussed.

10.1 Introduction

The CNC system in the 1970s and 1980s was a multi-processor system with several
8-bit CPUs or 16-bit CPUs and an individual processor and memory were assigned
for each function. Therefore, the former CNC systems were closed systems, in which
the design of the CNC system depends on the CNC maker’s hardware and firmware.
In the late 1980s, PCs built on Intel 80386 and 80486 processors having high com-
puting power and based on 32-bit CPUs were introduced and so, naturally, PC-NC
was developed using a PC system as base hardware for the CNC system.

Unlike the closed CNC system, where NC functions depend on the hardware,
PC-NC makes it possible to implement CNC functions in software modules by sup-
porting a real-time operating system (RTOS).

The architecture of PC-NC can be divided into three kinds:

1. Embedded motion controller, which carries out the NCK/PLC function with its
own processor, is attached to the extended slot of PC. The MMI is operated on the
PC.

2. Two PCs are used and are connected via high-speed communication. One PC is
used for MMI and the other is used for NCK/PLC.

353
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3. One PC with single CPU executes MMI, NCK and PLC in a multi-threading
environment with real-time OS.

Type 1 and Type 2 use more than one CPU and use a PC for the user interface
(MMI). Type 1 uses an embedded board for executing NCK/PLC functions while
Type 2 uses the PC hardware. Therefore, configurations using more than one CPU
can be classified into two types; one is based on the standard PC bus, such as ISA,
EISA, and PCI, while the other is based on high-speed communication such as Ether-
net and high-speed serial communication. In the case of Type 3, where a single CPU
is used, the hardware components for communication are removed and the MMI
function is carried out as one software task on a single CPU. In Type 3 architec-
ture, the NCK, PLC, and MMI functions are regarded as individual tasks and are
performed on a single CPU by a real-time scheduler. Therefore, this configuration
makes it possible to reduce the size and cost of the CNC system.

The following describes type 3 in more detail. The CPU of PCs has advanced
from 16 bits to 64 bits. The computing power of the Intel Pentium CPU has more than
doubled compared to the 32-bit CPU. Furthermore, it is possible to provide a Graphic
User Interface using Windows OS. The advancement of CPUs has made it possible
to carry out MMI and user applications after performing NCK. According to some
experiments, in 8-axis control systems based on a Pentium 133 CPU, 40% of the
computing power is used for executing all tasks except for the MMI task. Therefore,
the conclusion is that 60% of the computing power can be used for MMI and various
user applications. For example, in a PC-NC using a single CPU, advanced functions
such as remote monitoring or diagnosis can be realized via the network established
between controllers in a shopfloor.

In conclusion, with modern CPUs it is possible to execute all tasks that were
previously performed on two CPUs using one modern CPU. Type 3 is also called
Soft-NC, and the functions of NC and PLC are designed as functional modules or
software tasks in the multi-processing environment of a real-time OS. Soft-NC has
the aim of realizing the PC-NC architecture using software. Therefore, the NC and
PLC functions in Soft-NC are executed together in cooperation with user applica-
tions via the various internal services of the OS. This type of system can easily be
advanced to become an open system where the user can add user-specific functions
and modify existing functions.

For various configuration types, operating systems are applied differently. Since
Type 1 and Type 2 use more than one CPU, it is possible to interchange data between
them via the bus interface or asynchronous high-speed communication even when
different operating systems are used. Therefore, in general, a PC operating system
is used for the MMI system and a real-time OS is used for the NCK/PLC system
which requires the real-time property. Because of the separated OS environment, the
above-mentioned systems are easy to design from the point of view of the system
programmer.

Two methods to implement the OS can be considered for a Type 3 system.
The first idea is that two kinds of operating system run on a single PC. Accord-

ingly, in order to perform MMI operations on a non-real-time OS (e.g., DOS and
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Windows OS) and NCK/PLC operations on a real-time OS on a single CPU, a real-
time OS that regards real-time tasks as high-priority tasks and non-real-time tasks
as low-priority tasks is required. As examples of this type of OS, there are FlexOS,
operating together with DOS, iRMX, operating with Windows 3.1, and InTime, op-
erating with Windows NT.

Figure 10.1 shows Soft-NC based on iRMX. The NCK/PLC functions are as-
signed as tasks having high priorities and are performed preferentially by high-
priority scheduling. MMI functions executed on Windows 3.1 are assigned as tasks
having low priorities and are carried out by VM86 mode, iRMX’s virtual mode, after
all tasks relating to motion control are finished. InTime is used with the same concept
as with iRMX, but Windows NT is used as the basic OS.
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Fig. 10.1 Example of Soft-NC architecture using both RTOS and Windows

The second method for implementing the OS is to utilize only one operating sys-
tem capable of real-time operation. Windows NT was announced as an OS having
real-time capabilities. It is possible to set the minimum time slice to 1 ms (default
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10 ms). However, it cannot be used for a hard real-time system that needs a high
resolution timer capable of several tens or 100 μs setting.

RTX (Real-Time eXtension) developed by Venture Com is one solution for re-
solving the hard real-time requirements of the Windows NT system. This package
provides a variety of RTX call functions similar to the system calls of Windows NT
for the system programmer’s convenience. RTX is a kind of supplementary code to
access the HAL (Hardware Abstract Layer) of Windows NT. Nowadays, Windows
NT-RT extension is preferred as the development environment for the Soft-NC sys-
tem.

The reason that Windows NT is preferred by Soft-NC developers is summarized
as follows:

1. Operates all application programs developed under previous operating systems,
such as DOS, Windows 3.X, and Windows 95.

2. Supports three-dimensional graphic tools such as OpenGL, and
3. Provides network capabilities as a basic function.

Recently, the Linux system for PC has also been used as a OS for the Soft-NC.
Because the Linux used is an OS of Type 3 it is not suitable for a hard real time
system, it implements RT-Linux in a similar manner to the RTX of Windows NT.

10.2 Design of Software Architecture

As previously mentioned, the software design of a CNC system must be done to-
gether with the design of the hardware and the operating system. As the design of
the software architecture belongs to the stage of developing MMC, NCK, PLC, and
the system kernel, it is difficult to apply formal methodologies and regular rules and
depends on the system designer’s know-how. Therefore, in this book, the fundamen-
tal design of software architecture for CNC system modeling, kernel design, and
communication among modules will be described in the case of Soft-NC design.

10.2.1 CNC System Modeling

To design the software architecture, system modeling of the processes and tasks to
be performed on CNC system is needed.

The software modules of the CNC system consist of the OS and system kernel
based on PC hardware and three key application modules, i.e. NCK, MMC, and PLC.
Figure 10.2 shows an example of a software model with three application layers and
the tasks belonging to each application layer. For each task, the classification of the
application layer is done from a functional point of view. However, this is just an
example, and from a different point of view they could be classified differently.
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Fig. 10.2 Software model and application tasks

If we classify the variety of tasks in terms of function in order to make the model,
they can be divided into two types; one is the non-cyclic task and the other is the
cyclic task. A non-cyclic task means a task in which the real-time property is not
required and the MMC, interpreter and communication function are typical examples
of the non-cyclic task. A cyclic task is a task for which the real-time property is
required and the interpolator and position control tasks are typical examples of cyclic
tasks. Details of these will be given in the following sections.

10.2.1.1 Non-cyclic Task

The interpreter, intermediate handler and external communication tasks belong to the
non-cyclic task category.

The interpreter reads ASCII blocks from a part program and interprets them.
Then, for the next task, it saves the interpreted data in internal memory. The in-
terpreter steps performed are as follows:

1. Read ASCII block and check the schema and grammar.
2. Transform the G-code block read into an internal data structure.
3. Save modal or one-shot data in an internal data structure.
4. Perform operations related with variables in part program.
5. Perform control flow operations such as jumps and subroutine calls in the part

program.
6. Interpret macros in the part program.
7. Synchronize with the interpolator.

The intermediate handler generates data concerning tools, spindle, and coordina-
tion data based on the information in the data from the interpreter and stores it in an
internal buffer. The details of the intermediate handler are as follows:
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1. Set spindle function.
2. Transform program coordination system into the local coordinate system specified

in the CNC system.
3. Do tool compensation.
4. Check speed limits and prohibited machining areas.
5. Get the data ready for interpolation.
6. Perform look-ahead functions

The external communication task is to provide an interface between NCK and
external components and provides the following functions:

1. Send a part program to NCK.
2. Read and write the parameters and user-specified variables such as tool compen-

sation to and from NCK.

10.2.1.2 Cyclic Task – Low Priority

The interpolator belongs to the category of cyclic tasks with low priority. The inter-
polator reads the interpreted data from the internal buffer and then interpolates the
movement of all axes. The interpolated data is then sent to the position control loop.
The interpolator is executed as follows:

1. Read the data from the internal buffer.
2. Read the actual position from the position controller.
3. Interpolate spindle rotation in position control mode
4. Interpolate axis movement along the path.
5. Transform the coordinate system and check prohibited machining areas.
6. Send interpolated data to the position controller and check software limits of axes.

10.2.1.3 Cyclic Task – High Priority

The position control task belongs to the category of cyclic tasks with high priority.
In the position control task, interpolated data is transformed to motor rotation speed
and, if necessary, the torque of the drive is computed. The limits of the control loop
and drive are checked.

1. Actual position is fed back from a drive.
2. Perform position control algorithm and compute commands for drives.
3. Communicate with the interpolator.
4. Prepare the instruction at the next position control sampling time.

In conclusion, the key to the design of a Soft-NC is:

1. to realize the system kernel programming to make the tasks execute perfectly in
the kernel, and
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2. to develop each task in software form as modeled, under the determined hardware
architecture and operating system.

10.3 Design of Soft-NC System

10.3.1 Design of Task Module

The task modules of the CNC system can be designed in unlimited combinations ac-
cording to the specification of the CNC and the designer’s concept. Typically, how-
ever, the functions of commercial systems can be classified as shown in Fig. 10.3 and
the major function of each module is as shown in Table 10.1.
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Fig. 10.3 Design example of the task modules

After the IPR task reads a part program, including the user’s instructions, it inter-
prets the ASCII blocks and transforms them into an internal data structure, generates
data about tools, spindle, and coordination system, and stores them in the internal
buffer in order for the interpolator to use them. In addition, the IPR task interprets
the control mode and user input from MMI tasks and input signals from the PLC
task.

In the IPO task, various interpolation methods (linear, circular, and curve inter-
polation) are performed based on the interpreted data in the internal buffer and then
acceleration and deceleration control is carried out to smooth the movement of the
machine. Finally, the displacement and the velocity of each axis are computed and
written in dual-port memory (DPM) in order to send them to the position control
task. The final instruction generated from the IPO task is input as reference data to
the PID control algorithm. The position control task is performed in order to min-
imize the difference between the actual position from the motor encoders and the
reference data.
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Table 10.1 Functions of each task module
Module Task Main function

Interpreter Task Control the operating mode of NC.
(IPR) Send position data and NC status to MMI.

Communicate with the Interpolation Task.
Communicate with the PLC task.
Interpret NC blocks.
Store the interpreted data in the block
record buffer.
Compensate for tool offset and tool length.
Check software limits.

Interpolation Task Read the block record buffer.
(IPO) Communicate with the Position Task.

NCK Read/write CNC-PLC interface.
Perform Linear/Circular/
Spline/Polar interpolation.
Perform real-time transformation.
Compensate for backlash and pitch error.
Carry out spindle processing.

Position Task Read the encoder.
(POS) Calculate position error.

Perform the position control algorithm.
Monitor servo faults.
Output velocity instructions to each drive.

Module Task Main function
Fast PLC Task Handle interrupt signals.

(FPLC) Handle inspection signals.
PLC Handle Fast I/O signals.

Normal PLC Task Handle Normal I/O signals.
(NPLC) Handle M, S, and T codes.

Module Task Main function
Machine Display auto-mode, MDI mode, and tool

path.
Program Execute G-code editor, folder manager,

and conversational programming system.
Parameter Manage parameters related to system,

programming, and tool parameters.
MMI Tools Manage tool offset, tool life, and tool

shape.
Utility Manage DNC, PLC monitoring, alarm,

and data communication
Kernel Manage screen display, key input, file

management, application module
handling, system boot up and external
communication.
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10.3.2 Design of the System Kernel

In order to perform the independent tasks of the CNC system, such as the MMI,
NCK, and PLC tasks in Fig. 10.4, the system kernel should be designed based on a
pre-emptive multi-tasking OS in which each task should be regularly executed within
a specified time. In particular, the NCK/PLC system that must guarantee hard real-
time property is executed regularly and the MMI system with soft real-time property
is executed non-periodically.

Therefore, a variety of tasks are executed sequentially every specified sampling
time. The position control task having the highest priority is executed every short-
est sampling time, the interpolation task having the next highest priority is performed
every multiple times of the sampling time of the position control task. The interpreter
task having low priority is regularly performed during the spare time of the proces-
sor. Finally, the MMI system for user interface process, having the lowest priority,
is designed as a non-cyclic process. Therefore, the MMI task is executed using the
remaining computing power of the processor after all other tasks are finished. The
scheduling method, above, is somewhat simple and is called “monotonic schedul-
ing”. It is suitable for a CNC system because the functions, or tasks, of a CNC system
can easily be modularized and the behavior of each task working within the module
depends on the sequential result of preceding tasks.

As an example of systems using the above-mentioned scheduling, two hypotheti-
cal systems having different CPU models are compared, as shown in Table 10.2.

In the case of the first system, using a Pentium-100, the sampling times of the
position control task is set as 1 ms, the sampling time of the interpolation task is set
as 2 ms, twice the sampling time of the position control task, and the sampling time of
the interpreter task is set as 4 ms, four times the sampling time of the position control
task. As shown in Table 10.2, it takes 210 μs to complete the position control task, it
takes 470 μs to complete the interpolation task, and it takes 1800 μs to complete the
interpretation task. Even with the system using a Pentium-75, the total time for the
position, interpolation and interpretation tasks is less than 4000 μs, which means that
the computing capacity of a Pentium processor is enough for the CPU of Soft-NC.

Table 10.2 Sampling time and execution time of each task

Position Position IPO IPO IPR IPR
CPU Time Transit Time Transit Time Transit

(ms) Time (μs) (ms) Time (μs) (ms) Time (μs)
Pentium-75 2 350 4 700 8 2600
Pentium-100 1 210 2 470 4 1800

The time occupation of the processes or tasks can be depicted as in Fig. 10.5. The
loop cycle time of each task can be arbitrarily specified by the developer or user. In
particular, because the cycle time of the interpolator and position control tasks has a
direct influence on the performance of a machine tool, substantial caution is needed
to harmonize the performance of machine tools.
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Fig. 10.4 Modular structure of Soft-NC

In the above example, the MMI uses the remains of the CPU power. Although
the extra CPU power can be used for PLC it is omitted in Fig. 10.5 for explanatory
convenience. It is supposed that the cycle time of the position control task is 1ms
in Fig. 10.5. If a faster processor is used in order to shorten execution time, more
computing power of the processor can be used for MMI and PLC. Therefore, we
can see that as the processor’s clock rate or capacity is increased, advanced tasks of
Soft-NC that spend more time can be performed adequately.

10.3.3 PLC Program Scanning and Scheduling

After the code sent from a programming device is stored in the memory of the CPU
module, it is executed sequentially by a PLC program executor. The PLC program
executor plays the role of continuously scanning the user program and performing
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the specified instructions. The execution flow of the PLC program executor is to scan
iteratively the input/output ports and PLC program as shown in Fig. 10.6. The scan
cycle consists mainly of three steps:
Step 1: Checking input ports: first, PLC checks whether an input port is on or off
status and then it stores these statuses in memory.
Step 2: Executing a program: PLC executes a program sequentially code by code. It
calculates the status of output ports based on the status of the input ports obtained in
Step 1. The calculated results are stored for use at the next step.
Step 3: Changing output: Finally, PLC changes the output port status based on the
results from Step 1 and Step 2. After finishing Step 3, PLC returns to, and repeats
Step 1.

Accordingly, one scan time is defined as the total time spent to perform the three
steps and, in general, some tens of milliseconds to some hundreds of milliseconds are
spent. Since the PLC task consists of programs with various priorities, the scheduler
of the OS manages them in order to execute them in real time.

The functions executed by PLC can be summarized with respect to the response
time and periodic behavior, as shown in Table 10.3. PLC tasks can be variously clas-
sified, from tasks that require high-speed response, such as an interrupt to a program,
to tasks that require low-speed response, like user utility functions. Therefore, if they
are programmed in one program, tasks that require high-speed response may not be
completed in the specified time because all tasks are executed once during one scan
time.

Therefore, it is necessary to assign a priority to each task and complete tasks
sequentially depending on the priority of the task in order to overcome the above
problem. Of course, high priority is assigned to tasks having short scanning time and
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Fig. 10.6 Scan cycle of PLC program executor

requiring prompt action. It can be designed that an emergency stop, for example,
is performed immediately by using an interrupt signal if the emergency button is
pushed. As shown in Table 10.3, a PLC program is classified as four kinds of tasks.
The start of each classified program is controlled by a system scheduler. Eventually,
the priorities of all tasks in the CNC system can be defined, as with the example in
Table 10.4.

Table 10.3 Priorities of PLC tasks
Interrupt 1. Irregularly executed from the input signal of a sensor.
Program 2. The program with the highest priority among PLC tasks.

3. Used for handling signals requiring quick response.
4. Processing within hundreds of microseconds.
5. Feedback control routine performed by PLC system.

Fast 1. Repeated within every several milliseconds.
Processing 2. Highest priority among cyclic tasks.
Program 3. Used for handling signals requiring quick response.
(Fast Task) 4. Processing under 1 ms.

5. Routine for counting position of turret and ATC.

Main 1. Repeated every tenth of a millisecond.
Processing 2. Program edited by user.
Program 3. Program length should be controlled for executing
(Normal Task) every 10–20 ms.

4. PLC program edited in a variety of languages
such as Ladder diagram.

Custom 1. Executing custom program after completing main
program.

Program 2. Program having the lowest priority.
3. Programs such as screen display and serial interface.
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10.3.4 Task Synchronization Mechanism

In order to perform the tasks successfully according to the schedule, a synchroniza-
tion mechanism for the tasks is needed. The following synchronization mechanism
can be used for Soft-NC.

To activate the components of the CNC system in a multi-processing environment,
first, a priority is assigned to each tasks and then a schedule made according to the
assigned priority. Table 10.4 shows an example of assigning priority to tasks. The
position control task has the highest priority and the MMI task has the lowest priority.
The PLC task is divided into the Fast PLC task and the Normal PLC task. The Fast
PLC task has lower priority than the Interpolation task, while the Normal PLC task
has lower priority than the Interpreter task.

Table 10.4 Priority assignment for various tasks

Task Priority
CNC Position task 2

CNC Interpolation task 5
Fast PLC task 12

CNC Interpreter task 17
Normal PLC task 22

Comm task 36
MMI task 64

To synchronize all tasks of the CNC system an OS provides various mechanisms,
such as global variables, semaphores, and mailboxes. In this section, we use the
semaphore to design Soft-NC, as shown in Fig. 10.7. The system kernel procedure
for synchronization is as follows:

1. Create the semaphores for the position control task and the interpretation task.
2. Create the position control task and the interpretation task and then set them into

idle status.
3. Set an interrupt enabled by the timer for the position control task.
4. On receiving the semaphore from the position control task, the interpretation task

continues to execute its own routine.

As shown above, all tasks, except for the position control task, are put into sleep
status after they have been created, to wait for the semaphore from the position con-
trol task. The position control task checks the status of all tasks before releasing the
semaphore to pass execution right to another task. Only when a particular task is in
idle state does the position control task release the semaphore. However, if the par-
ticular task is in busy state, the semaphore is not released and the task in busy state is
rescheduled based on the priority-based scheduling according to the priorities shown
in Table 10.4.
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   ....................................................................

   while(True)
  {
 IPR_status = idle;
 /* wait for semaphore form POS task */
 receive_unit (IPR_semaphore, ............);
 IPR_statue = busy;

 /* execute IPR routines */
     for (i=0; i<number of routine; i++)
  { routine table [i]; }

 IPR_Act_CNT++;
 }

Fig. 10.7 Task synchronization by semaphore

The design of scheduling and synchronization to activate the tasks of the CNC
system by the system kernel software mentioned above was described. Now we con-
sider the routines included in particular tasks. How these routines are executed based
on the scheduling of the system kernel will be addressed.

PLC is a large process having a series of continuous subtasks. If we investigate the
working flow of NCK, NCK has an iterative loop so that the data calculated by the
routine of the interpreter task are stored in the block buffer, the interpolator performs
interpolation, compensation, and spindle control after reading the data from the block
buffer, and, finally, the interpolated data is sent to the position controller.

In the case of the PLC process, the work flow is similar to the NCK process. The
PLC process scans the input/output ports iteratively every specified sampling time,
performs the user program, and outputs the operation results. Although the MMC
process is executed in various ways depending on user’s input, it does not result in
any problem for real-time control when MMC is handled as conventional application
software. Therefore, when the NCK and PLC processes use processors according to
scheduling, their own routine is repeated until an interrupt stops the current routine.

If a process is interrupted during execution, it stops execution promptly and passes
the right to use the processor to the task with next priority. When it gets its own turn, it
starts from the new routine, which was the next routine due before interruption at the
previous turn. If the interrupt does not occur during execution, the right to processor
use is passed to the task having the next priority after the current task has completed.
In conclusion, the routine for each task is performed as a closed-loop form and the
routine is executed iteratively during the specified time. This mechanism is shown as
the FOR-loop of the program code in Fig. 10.7.

It is necessary to load the functional modules into memory during system boot-up
in order to perform the functional modules sequentially after a particular task takes
the right of processor usage via a semaphore. The functional modules are loaded into
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the memory segment assigned to each task regardless of the execution order when
the system is booted up. If the same functional module exists on an auxiliary storage
device, the system software loads the updated module by using the module header
of the functional module loaded in the memory segment. To execute the functional
modules sequentially in a memory segment according to the assigned priority, we
can use the routine table defined in the data segment (CS), as shown in Fig. 10.8.
Accordingly, the routine table is created according to the routine’s priority during
system boot-up and the corresponding routines are executed continuously after sys-
tem boot-up has been successfully completed.

Task Memory segment

for (i=0; i<n; i++)
  {*RoutineTable[i]};

void far *RoutineTable[n]

CS

DS

Module header
Code section

Process

Module header
Code section

Module header
Code section

Module header
Code section

Address of routine 1
Address of routine 2
Address of routine 3
 ...
Address of routine n

Fig. 10.8 Execution method of routines in a task

Let us investigate how other tasks take the semaphore from the position control
task and how they are activated at the specified time. Figure 10.9 shows that the
interrupt from the timer wakes up the position control task every sampling time,
performs a series of processes related to position control, and then passes the right
of processor usage to another task using the semaphore.

In the above example, the sampling time of other tasks is designed to be a multiple
of the sampling time of the position control task. So, it is possible to control the
frequency of other tasks. The variables defined in the above are defined as follows.

• Task status: this is the flag variable to denote the status of a task. If the task has
completed before the interrupt, it has ‘idle’ value. If the task was interrupted dur-
ing execution it has ‘busy’ value.

• Task Set CNT: This is computed by dividing Task Loop Time by Position Samp-
ling Time. It defines the execution frequency of the task.
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   PositionTask()
  {
 ................................
 IPO_Act_CNT = IPO_Act_CNT % IPO_Set_CNT;
 If(IPO_Act_CNT == 0)
 {
      if (IPO_statur = busy)
  return busy;
      else
  /* Send semahpore to activate IPO task */
  send_unit(IPO_semaphore);
 }
 
 IPR_Act_CNT = IPR_Act_CNT % IPO_Set_CNT;
 If (IPR_Act_CNT ==0)
 {
       if (IPR_status = busy)
  return busy;
      else
  /* Send semaphore to activate IPR task */
      send_unit (IPR_semaphore);
 }
 ...............................
  }

Fig. 10.9 Semaphore in the position control loop

• Task Act CNT: means how many times the tasks are executed. So, whenever the
task completes its own routine, this variable is increased by one.

Suppose that the sampling time of the position control task is 1 ms. If the user
sets Task Loop time to 4 ms, Task Set CNT becomes 4. This means that whenever
the position control task is executed four times, the task with 4 ms Task Loop Time
is performed once.

Let us consider how to control the sampling time of the position control task
accurately. First of all, it is possible to assign the interrupt by an external timer to one
from among the PC interrupts IRQ10, 11, 12, 13, 14, and 15. Whenever the interrupt
is signalled in a constant period, the interrupt service routine performs the position
control task and then rate monotonic scheduling (RMS) operates, as in the above
example. As described above, the non-maskable interrupt based on the hardware that
is capable of generating predictable time ticks is typically used for hard real-time
systems.

Another method is to use a high-resolution timer that a real-time OS has unlike
a general-purpose OS. As an example, RTX, the real-time extension of Windows
NT, has its own timer whose resolution is 100 ns and various system ticks can be
generated by using it according to the needs of the application software. In most
cases of a real-time OS, it is possible to set the highest priority to a self-waking
thread. Therefore, synchronization by software timer is possible without any external
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timers. For example, the self-waking thread in QNX can be implemented easily, as
shown in Fig. 10.10.

   while (True)   //infinite loop
  {
 RTSleepFT(&period);
   // It is difficult to get a deterministic response by using
 Sleep() of Windows NT.
 
   // Execute some control routines here
   // example, Position control
 
  }

Fig. 10.10 Synchronization using a software timer

As shown in the above code, if the self-waking thread is set to have the highest
priority, another process takes the right for usage of the CPU at every specified time
period. When, the specified time of the timer has elapsed, the process takes the right
for usage of the CPU and executes, for example, position control. Using this mech-
anism, a particular process can be repeated every specified time in a deterministic
manner.

10.3.5 Inter-Task Communication

Up to now, the design concept for the basic modules and system kernel of Soft-
NC has been investigated, and widely uses multiple tasks activated by semaphores
and a loop drive method using a routine table as an implementation example. In
this section, data flow and the communication mechanism between modules will be
addressed.

For the data handled in the CNC system, various data formats are used, from bit
data for status flags to ASCII files for part programs. According to the direction, the
frequency, and the method of data transmission between modules, the data may be
classified as shown in Table 10.5.

Therefore, from the point of view of each module, the data transmitted between
modules can be summarized as in Table 10.6, according to the direction, data type,
and transmission frequency.

As a method for sending a variety of data, shared memory has typically been
used. For accessing shared memory from different modules, there are the Direct Ac-
cess method (reading the data stored in memory) and the Request/Answer method
(reading the data produced by requests), as shown in Fig. 10.11.
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Table 10.5 Communication data classification of CNC system

Classification Items Comment
Files NC program, PLC program,

NC parameter
Data Command Request service

Variable Various data set
NCK/PLC→MMI Data for display

Direction MMI→ NCK/PLC Transfer information for op.
PLC↔ NCK Bidirectional data

Frequency Event Data transfer if needed
Cyclic Data transfer periodically

Method Shared memory Dual port memory
Comm task Communication Task

In the Direct Access method, various data such as screen display, the status vari-
ables of processes, fast input signals and error messages, are stored and updated in
the shared memory in a periodic manner or through events occurring at irregular
time intervals. In this method, the transmission mechanism is controlled by turning
a special flag ON or OFF. For example, in the case of sending some data from NCK
to MMI, the NCK sets the flag to zero and sets the flag to one after updating the
shared memory. At this moment, MMI reads the data in shared memory when the
flag becomes one and changes the flag to zero after completing reading the data.
Using to the above simple flag management, the reading and writing actions of two
processes do not compete. The same mechanism can be used for sending data from
MMI to NCK. The Direct Access method is appropriate for a job to send bit data that
is periodically updated and event-driven.
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Table 10.6 Inter-module communication data classification
Direction Classification Item comments

CNC Status Actual Position/Velocity
Distance to go
Actual Lag, Velocity %
Final Position for NC
block
Active G code Display purpose
Active Block number
Selected Axis Cyclic
Tool information/
Correction

Part Program Program number/name
Subprogram number/
name
Program repeat/
Program active

Parameter Control Gain Display purpose
PLC
Tool Request/Answer
Programming

System State Emergency stop Cyclic
Cycle stop

NCK/PLC→ Spindle/Feed Actual RPM/feed
MMI Programmed RPM/feed Display purpose

Maximum RPM/feed
Minimum RPM/feed Cyclic
Override %
Active Spindle number

PLC Input/Output Display purpose
Information Byte information

Timer information Request/Answer
Error Level
- Key/command delete

Error - Control reset
Handling - Cold/warm start Event

Error Type
- Editor
- Block processing
- Servo
- Hardware
- PLC
- Communication

Message Send Message Event
Handling
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Figure 10.6 (continued)
Interface Signal Input / Output

A/D, D/A information
PLC↔ NCK Spindle Value/

Axis Position
Handwheel values Cyclic
NC parameter
NC correction

Operation Cycle Start/stop
MMI→ Mode Auto/Manual/MDI
NCK/PLC Single block/Homing

Warm start Cyclic
Jog+/Jog-
Time(sec/min/hour)

MMI↔ NCK File Program file Transfer
Management System parameter Request/Answer

PLC program loading
Copy/Delete file

PROC

L byte
Flag = 1

Flag = 0

Read
Data

Fig. 10.11 Direct access method

The Request/Answer method shown in Fig. 10.12 does not automatically update
the shared memory. When a service is requested by the module (requester) intending
to access the shared memory, the module (receiver) asked of a service passes the right
to access the shared memory after finishing the action corresponding to the requested
service.

When a service is requested to the receiver, the requested service is interpreted,
and recognition of the request is informed to the requester. After interpreting the re-
quested service, the receiver writes the response with respect to the requested service
to the shared memory, and allows the requester to access the shared memory. When
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the requester retrieves the data generated by the requested service, an acknowledge-
ment signal is transmitted to the receiver, and the process of accessing the shared
memory is terminated.

In general, this method is used for safe sending of long data such as program
files, system parameters, and PLC programs to the NCK/PLC modules from the MMI
module. For example, in the case of file transfer between MMI and NCK, NCK sends
MMI a request asking to send a part program to MMI and then MMI transmits the
program file to NCK via the shared memory.

Write Answer

Acknowledge

Read Answer

Request

Acknowledge

Recognize

Interpret Request

Fig. 10.12 Request/Answer method

The typical data structure of shared memory for communicating data in Operation
Mode can be realized as shown in Fig. 10.13.

10.3.5.1 Inter-task Communication in NCK

Data exchange between IPR, IPO, and POS tasks in the NCK module can be designed
by using shared memory, as shown in Fig. 10.14.

A General Communication Area is the area in shared memory where states, po-
sitions, and control flags are exchanged between the IRP task and the IPO task.
Emergency Stop, Axis Position, Error Handling Diagnosis, Debug Information, and
Watchdog Information are transmitted via the General Communication Area.

A Block Record Buffer is also defined, and is the area used for transmitting data
about NC blocks to the IPO task, the IPR can only write the data to it, the IPO can
only read data from it. It is defined as an area of shared memory and has a ring buffer
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0
1

2

10 - 11

Free hold Stop Operation
Active G-Code No. (Group 1)

Active G-Code No. (Group 2)

Active Block No.

SMDB11 NCK → MMI (Operation status)

Byte (or Offset) Bit 7 6 5 4 3 2 1 0

Fig. 10.13 Typical data structure of shared memory

IPR - IPO communication area
POS - IPO

communication area

IPR task POS task

IPO task

General communication Block record buffer

Fig. 10.14 Data exchange in NCK module

structure. Interpolation Type, Start and End Position, Corrections, Axis components,
Path Parameters, Path Velocity, Dwell time, and Spindle Information are stored in
the Block Record Buffer.

The POS-IPO communication area is the area for exchanging data between the
IPO task and the POS task. It is defined in shared memory and Command Axis Po-
sition, Spindle Output, Machine Position, Emergency Stop, Watchdog Information,
and Error Message are exchanged via it.

10.3.5.2 Communication Between NCK and MMI

Where the MMI and NCK/PLC modules operate on a single OS and single CPU,
communication between MMI and NCK can be designed easily. However, in the case



10.3 Design of Soft-NC System 375

of a CNC system where the MMI and NCK modules operate on individual CPUs, a
bus interface and high-speed serial interface can be used for communication between
modules. This configuration has a more complex communication mechanism than
Soft-NC. Not only should the communication speed necessary for meeting the real-
time requirements be considered but also reliability, communication distance, cost,
extensibility, and robustness.

The Open System Interface (OSI) seven layers shown in Fig. 10.15 has been typ-
ically used as the layer architecture for communication software. However, the OSI
seven-layer method is not appropriate in industry because it may not meet real-time
requirements. So, to realize the high-speed communication between MMI and NCK,
simplified layers are used based on three layers from among the seven layers of OSI.
Field buses such as BACNET and PROFIBUS have been developed based on the
simplified layers.

Application

Presentation

Session

Transport

Network

Data Link

Physical

OSI 7 Layers

Application

Data Link

Physical

Simplified Layers

Deleted layers for real-time application 

More Efficient,
Faster Response, 
Lower overhead

Fig. 10.15 Comparison between OSI 7 and Simplified Layers architectures

The communication software layer architecture to which the above 3-layer archi-
tecture is applied is shown in Fig. 10.16. It consists of a Hardware Driver for acti-
vating the Ethernet Controller and an Interface Level Driver for providing network
services and interface with application software. On the side of NCK, the commu-
nication task is designed as application software based on real-time OS. The com-
munication task of MMI is designed as application software based on Windows 95.
Therefore, on the side of MMI, the communication task can be designed easily by
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using an Ethernet driver for PC and Windows OS. However, in the case of NCK, the
communication task can be developed only when a real-time OS supports Ethernet.

Fig. 10.16 Software layer for communication between MMI and NCK

To manage the communication data efficiently, it is necessary to define the data
block for assembling the related data in shared memory. Having defined the block
for communication data of MMI, as for the block for NCK, it is possible to develop
easily application software for each module.

10.4 Motion Control System Programming Example

In this section, the example of system programming for implementing a motion con-
trol system in a real-time environment based on the NCK module detailed in Chap-
ter 6 will be described. As the development environment of the motion control sys-
tem, PC hardware with INTEL processor, Windows NT, and RTX (VentureCom)
were considered.

The Acc/Dec-Control-Before-Interpolation-type NCK, which was implemented
in this section, consists of the Rough Interpolation task, the Acc/Dec control task,
the Fine Interpolation task and Position Control tasks. As mentioned above, it is
necessary not only to implement all tasks but also to execute them successfully for
realization of NCK. For this, various API functions and techniques provided by RTX
were used for system programming. This section shows only one example of de-
signing NCK based on RTX and the system programming of NCK will be described
based on the implemented code.
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10.4.1 Design of System Architecture

The implemented ADCAI-type NCK, as shown in Fig. 10.17, is composed of main
function, timer handlers for the tasks of NCK, event server and handler for handling
the instruction from MMI, and ring buffers for transmitting the data between tasks.

Timer handler

Event server Event handler

Main

Ring

Timer

Rough IPO timer

Acc/Dec timer

Fine IPO timer

POS timer

Rough IPO

Acc/Dec

Fine IPO

POS

Emergency_Stop event

Cycle_Start functionCycle_Start event

Feed_Override event

Emergency_Stop

Feed_Override

Interrupt

Fig. 10.17 Sample architecture of ADCAI-type NCK

The main function is the function that is called first when the NCK boots up and
performs the following steps:

1. To initialize internal variables required for execution of NCK.
2. To create the timer and timer’s handler for each task.
3. To create the event server for handling the instruction from MMI.
4. To create ring buffers for transmitting data between tasks.

The timer handler is used for tasks that are iteratively activated every specified
time. The event handler is used for handling aperiodic events.

Because the rough and fine interpolation tasks, Acc/Dec control task, and position
control task are performed periodically, as shown in Fig. 10.17, they were realized
using a timer. MMI instructions, such as cycle start, emergency stop, and feed over-
ride, were realized by an event handler. (Note, because the emergency stop is a very
urgent instruction, it is realized by unique hardware interrupt. This example is only
to show how to implement motion control.)
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10.4.2 Creating Tasks

An individual timer for each task is created. This timer activates iteratively particular
handler functions every specified time. The following shows how to use the timer for
creating the Acc/Dec control task using RTX API.

// *********************************************************** //
// Description: Create Timer, set start time and period //
// *********************************************************** //
hAccDec = RtCreateTimer(

NULL, // Security - NULL is none
0, // stack size - 0 is use default.
DoAccDec, // Timer handler
NULL, // NULL context
P ACCDEC, // priority
CLOCK 2); // RTX HAL Timer

RtSetTimer(hAccDec, &Start time4, &RTPeriod);

As the function RtCreateTimer() shown in the above code is for generating a
timer, it receives data about security option, the size of stack, the name of the timer
handler, priority, and the reference time as arguments. “DoAccDec”, the third argu-
ment, is the name of the timer handler function. And P ACCDEC, the fifth argument,
gives the priority of timer handler.

It was mentioned that the latency time is the key performance index of RTOS
in Chapter 9. The average latency time of RTX is within some tens of μs (RTX
version 4.3 and P-III 866MHz). The maximum latency time does not exceed several
μs. This means that the timer provided by RTX can be used to implement a task
whose sampling time is 1 ms. Actually, regardless of the assigned priority, there
is the non-interrupted job that hinders real-time tasks. In the case of RTX, access
(reading/writing) to the hard-disk driver belongs in this non-interrupted job category.

Therefore, to guarantee the real-time property, it is essential to find a non-
interrupted job and avoid executing it together with real-time tasks.

10.4.3 Task Synchronization

In order to synchronize the execution of tasks, the start time and the sampling time
of each task must be properly decided. The result of the rough interpolation task
is used as the input to the acc/dec control task. Further, the result of the acc/dec
control task is used as input to the fine interpolation task. The result of the fine
interpolation task is used as the input to the position control task. Therefore, the
rough interpolation task, acc/dec control task, fine interpolation task, and position
control task must be started in that order. This can be represented by Eq. 10.1. In
Eq. 10.1, T SRIPO, T SACCDEC, T SFIPO, and TSPOS mean the start times of the rough
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interpolation task, acc/dec control task, fine interpolation task, and position control
task, respectively. Moreover, A ¡ B denotes that task A starts before task B.

T SRIPO < TSACCDEC < T SFIPO < T SPOS (10.1)

The implemented NCK can perform continuous mode machining. In order to
implement continuous mode machining, the Acc/Dec control task requires the in-
terpolation result from two previous blocks. Therefore, the start time of the rough
interpolation task and the Acc/Dec control task can be represented as in Eq. 10.2:

TSRIPO + 2 ∗PRIPO < TSACCDEC (10.2)

where, PRIPO means the sampling time (cyclic time) of the rough interpolation task.
The fine interpolation task and the position control task were separately imple-

mented. Once the fine interpolation task has been performed, the position control
task is executed eight times. (The sampling times of the fine interpolation task and
the position control task are set to 16 ms and 2 ms, respectively.) According to the
description, above, the relationship between the sampling time and the start times of
tasks is represented by Eq. 10.3:

TSFIPO < T SPOS < T SFIPO + PPOS (10.3)

The relationship shown in Eq. 10.3 is because data transmission from the fine in-
terpolation task to the position control task is done by shared memory instead of a
ring buffer. In general, the ring buffer is used when the difference between the speed
of producing data and the speed of consuming it is not constant. In the NCK mod-
ule, the data transition between the Acc/Dec control task and the fine interpolation
task is a good example of the use of the ring buffer. Whenever the Acc/Dec control
task is carried out once, the Acc/Dec profile for one block is generated. However,
the fine interpolation task consumes one profile segment corresponding to one sam-
pling time. A single execution of the Acc/Dec control task generates data that the
fine interpolation task can consume during several tens or several hundred time pe-
riods. Because the data consumption speed of the position control task and the data
production speed of the fine interpolation task are equal and fast data access speed is
needed, shared memory was used. Because the usage of shared memory instead of
the ring buffer makes the execution speed of the task predictable, the usage of shared
memory has a positive influence on the reliability of the implemented NCK module.

After the position control task consumes the whole result from the fine inter-
polation task, the fine interpolation task interpolates the path segment (precisely
speaking, the velocity profile) corresponding to the next sampling time. According
to Eqs. 10.1, 10.2, and 10.3, the start time of tasks is specified as follows:

// ********************************************************** //
// Description: Set start time and period for each timer //
// ********************************************************** //
// Set reference time.

RtGetClockTime(CLOCK 2, &Start time);
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// Start rough IPO after 20 milliseconds.
Start time1.QuadPart = Start time.QuadPart + 200000;
// Start ACC/DEC after 54 milliseconds.

Start time4.QuadPart = Start time.QuadPart + 200000 + 160000 +
160000 + 20000;

// Start fine IPO after 62 milliseconds.
Start time3.QuadPart = Start time.QuadPart + 540000 + 80000;
// Start POS after 79 milliseconds.

Start time2.QuadPart = Start time.QuadPart + 630000 + 160000;
// Set repeat for each timer.

RTPeriod.QuadPart = 160000; // 16 msec
POSPeriod.QuadPart = 20000; // 2 msec
// Create rough timer and start.

hRIPO = RtCreateTimer(
NULL, // Security - NULL is none
0, // stack size - 0 is use default.
DoRIPO, // Timer handler
NULL, // NULL context
P RIPO, // priority
CLOCK 2); // RTX HAL Timer

RtSetTimer(hRIPO, &Start time1, &RTPeriod);

In the above example, RtGetClockTime() is the function to get the current time
and the time from RtGetClockTime() is used as the reference time (the reference
time is saved in the variable Start time.). The start time for each task is decided on by
adding a particular time to the reference time. For example, the rough interpolation
task starts after 20 ms from the reference time. The position control task starts after
79 ms from the reference time. 20 ms is the allowance time spent to set variables
and create the timer for the rough interpolation task. The Acc/Dec control task starts
after the rough interpolation task has been executed twice and the allowance time, 2
ms, has passed.

As mentioned above, in RTX the timer is generated by RtCreateTimer() and the
timer is set by RtSetTimer(). RtSetTimer() gets the timer’s handler, the start time
of the timer and the frequency of the timer are given as arguments. hRIPO, the first
argument, denotes the handler of the rough interpolation task’s timer and Start time1,
the second argument, means the start time of the timer. RTPeriod, the third argument,
gives the sampling time of the timer.

The above was applied to the NCK implemented in this book. Depending on the
programming environment and algorithms, the description above varies.
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10.4.4 Task Priority

Priority is applied not only to a timer’s handler but also to an event handler. Equa-
tion 10.4 denotes the priorities of tasks. In Eq. 10.4, PRRIPO, PRACCDEC, PRFIPO, and
PRPOS denote the priorities of the rough interpolation task, the Acc/Dec control task,
the fine interpolation task, and the position control task, respectively. PRES means
the priority of the event for the emergency stop instruction. PRMMI denotes the pri-
ority of the event for other instructions from the MMI except for the emergency stop
instruction.

In Eq. 10.4, A < B denotes that the priority of task A is lower than that of task B.
And A <= B denotes that the priority of task A is less than or equal to that of task B.

PRMMI < PRRIPO <= PRACCDEC < PRFIPO < PRPOS < PRES (10.4)

10.4.5 Inter-Task Communication

A ring buffer and a shared memory are used for communication between tasks in the
NCK module.

The following is the data structure for the ring buffer between the interpretation
task and the rough interpolation task and the function to access the buffer. In general,
when the memory size is not enough, a ring buffer is used and, by using the ring
buffer, the usage of memory can be restricted. In particular, because of the difference
between the speed of producing data from the Acc/Dec control task and the speed
of consuming data by the fine interpolation task, memory may be used excessively.
Excessive usage of the memory may reduce the performance of system. To overcome
this problem, each task checks the number of items stored in the buffer. If as many
items exist as the specified number, the task does not work. Using this method, the
number of items does not exceed the specified size and the following code works like
a ring buffer.

// *********************************************************** //
// Description: Ring buffer structure and handling function //
// *********************************************************** //
// Ring buffer structure for communication between IPR and rough IPO

typedef struct CRingIRTag {
int nGCode; // IPO type 0 : G00, 1 : G01, 2 : G02
Vector Start; // Start position (mm)
Vector End; // End position (mm)
Vector Cen; // Center of circular IPO (mm)
float dRadius; // Radius of circular IPO (mm)
float dFeed; // Feedrate (mm/min)
float dSpindle; // Spindle speed (RPM)
short int nSpindleDir; // CW: 1, CCW: 2, Stop: 0
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int nStatus; // block status 0: start, 1: end
int nControlMode; // EXACTSTOPMODE

// /BLOCKOVERRAPMODE
int nBlockNumber; // Index number of block
int nWorkingstepID; // Working step ID
BOOL IsProgramEnd; // TRUE: end of block, FALSE: under machining
struct CRingIRTag* next;

} CRingIR;
// Head and tail of buffer

typedef struct CIRListTag
{

CRingIR* head;
CRingIR* tail;

}CIRList;
// ********************************************************** //

// Description: Add item at tail of buffer //
// ********************************************************** //
void CIRList AddTail(CIRList* list, CRingIR* item)
{

item−>next = NULL;
if(list−>tail == NULL) {

list− >head = item;
list− >tail = item;

}
else {

list− >tail−>next = item;
list− >tail = item;

}
}
// ********************************************************** //

// Description: Delete item structure at head of ring buffer //
// ********************************************************** //
BOOL CIRList RemoveHead(CIRList* list)
{

CRingIR* temp;
if(list−>head == NULL)

return TRUE;
if(list−>head == list−>tail) {

free(list-¿head);
list− >head = list− >tail = NULL;
return TRUE;

}
else {

temp = list− >head;
list− >head = list− >head−>next;
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free(temp);
return FALSE;

}
}
// ********************************************************** //

// Description: Delete all item structures in ring buffer. //
// ********************************************************** //
void CIRList DeleteAll(CIRList* list)
{

BOOL bRtn;
while(1) {

bRtn = CIRList RemoveHead(list);
if(bRtn)

break;
}

}

Let us investigate communication between the NCK module and the MMI mod-
ule. The NCK module sends the MMI module data about the status of NCK and MMI
displays the data. Thus, the NCK module must do real-time communication with an
external system and shared memory is used for the real-time communication. The
following code is an example of creating shared memory in RTX. RtCreateShared-
Memory() is the function for generating shared memory and it has the reason for
access to the memory, the name of the memory, and the variable for storing the mem-
ory’s virtual address as arguments. PAGE READWRITE, the first argument, denotes
that the created shared memory is to be used for reading and writing some data. The
second and third arguments denote the size of the shared memory. “StatusDBName”,
the fourth argument, means the name of the shared memory. Other processes can ac-
cess the shared memory through “StatusDBName”. “locate”, the fifth argument, is
the name of the variable for storing the virtual address of the shared memory.

// ********************************************************** //
// Description: Create a shared memory. //
// ********************************************************** //
HANDLE hShm;
DWORD dwMaximumSizeHigh = 0;
PVOID locate;
hShm = RtCreateSharedMemory(PAGE READWRITE,

dwMaximumSizeHigh, sizeof(struct NC Status DB),
“StatusDBName”, &locate);

RtUnmapSharedMemory(locate); // Unmapping of created memory
RtCloseHandle(hShm); // Close handle of shared memory
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When other processes or threads want to use the shared memory generated by the
above code, access to the shared memory is possible by using RtOpenSharedMem-
ory(). The function RtOpenSharedMemory() has the reason for the access to the
memory, the name of the memory, and the variable for storing the memory’s virtual
address as arguments. In the example below, the first argument, SHM MAP WRITE,
denotes that the shared memory is opened for writing some data. The third argument
“StatusDBName” is the name of the shared memory. The fourth argument, locate, is
the name of the variable for storing the memory address. The second argument has no
meaning here and is ignored in the function. The code below is to show that the posi-
tion and velocity of an axis are written in the shared memory. After using the shared
memory, it is necessary to free the virtual address and the handler of the shared mem-
ory by using RtUnmapSharedMemory() and RtCloseHandle(). In the code below, the
data written in the shared memory is periodically read by MMI every specified time
interval and is displayed.

// *********************************************************** //
// Description: Access the previous shared memory. //
// *********************************************************** //
hShm = RtOpenSharedMemory(SHM MAP WRITE, FALSE,

“StatusDBName”, &locate);
pStatus = (NC Status DB*)locate;

pStatus−>CommandX = CurPos X.dCommand;
pStatus−>CommandY = CurPos Y.dCommand;
pStatus−>CommandZ = CurPos Z.dCommand;
pStatus−>CurrentX = CurPos X.dGmOut;
pStatus−>CurrentY = CurPos Y.dGmOut;
pStatus−>CurrentZ = CurPos Z.dGmOut;
pStatus−>CurrentFeed = ActualFeed;
RtUnmapSharedMemory(locate);

RtCloseHandle(hShm);

10.4.6 Create Event Service

In general, shared memory is used for data transition between processes and an event
is used for sending the on/off signal. The instructions for cycle start and emergency
stop from MMI to NCK are examples of the usage of an event. (Note that, in general,
the on/off signal of switches is sent to PLC via a memory map. The on/off signals of
switches are written in a memory map and PLC checks the memory map iteratively
every specified time period. If PLC notes the change of a particular value in the
memory map, PLC performs the corresponding task. The memory map is used for
sending/receiving massive data amounts between hardware components (e.g., MMI
operation panel, NCK board, and PLC board). However, when the size of the data
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is small and all components are implemented in software, an event may replace the
memory map.)

Communication between the MMI operation switch and NCK/PLC was imple-
mented via an event. The usage of an event makes it possible for NCK/PLC to re-
spond quickly and handle MMI operation switch without delay. It can reduce the
burden for PLC or NCK to monitor a memory map iteratively. The following code
shows an example for generating an event variable and a handler for handling the
cycle start instruction.

// *********************************************************** //
// Description: Create Event //
// *********************************************************** //
// Create event object.
hStartEvent = RtCreateEvent(

NULL, //security attribute
FALSE, //manual reset
FALSE, //initial state
”NCKSTARTEVENT” //the event name
);

// Create thread to handle the event.
hStartHandler = RtCreateThread(0, 0, StartHandler, NULL,

CREATE SUSPENDED, 0 );
// Priority assignment of thread.
if (RtSetThreadPriority(hStartHandler, STARTPRIORITY) == FALSE)
{

RtPrintf(”RtSetThreadPriority error = %d
n”,GetLastError());

ExitProcess(1);
}
// Start thread.
dwSuspendCount = RtResumeThread(hStartHandler);

The usage of an event follows four steps. The first is to create the event variable
(object). The second is to create a thread for handling the event. The third is to assign
a priority to the generated thread. The fourth is to activate the thread. RtCreateEvent()
is the RTX API function for creating an event variable (object) and receives the iden-
tification of the event object and initial status of the object as arguments. “NCK-
STRTEVENT”, the fourth argument, denotes the identification of the event object
and FALSE, the third argument, means that when the event object is created, it is in
non-signal status.

RtCreateThread() is the function for creating a thread and it receives the thread
handler function and the initial status of the thread as arguments. StartHandler, the
third argument, denotes the name of the handler function and the fifth argument,
CREATE SUSPENDED, means that as soon as the thread is created, the handler
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function is suspended. The priority of the generated thread is specified by RtSet-
ThreadPriority(). As arguments, RtSetThreadPriority() receives the handler of the
function to which the priority is assigned and the priority that will be assigned. In
the example, hStartHandler denotes the handler of the function to which the priority
is assigned and STARTPRIORITY means the priority. After assigning the priority to
the handler function, the thread begins.

The following is the thread handler for handling the cycle start instruction. The
following function is defined by RtCreateThread(). As RtWaitForSingleObject() in
the code is the function to wait for that particular event object to be turned true
(or on), it plays the role of temporarily stopping execution of the function. RtWait-
ForSingleObject() receives the handler of the awaited event and the awaited time as
arguments. In the code, hStartEvent denotes the handler of the awaited event and
INFINITE means that RtWatForSingleObject() waits indefinitely for the event until
the signal of the event is changed to true (or on).

// ********************************************************** //
// Description: Handling “Cycle start” thread. //
// ********************************************************** //
// Function to handle ‘cycle start’ event.
ULONG RTFCNDCL StartHandler(void * nContext)
{

DWORD dwEventReturn;
while(1) {

// Wait until Cycle start button is pushed.
dwEventReturn = RtWaitForSingleObject(hStartEvent, INFINITE);
Sim total count = 0;
// Start NCK.

StartNCK();
}
return(0);

}

The following shows how other processes call the event function, which is in-
cluded in the MMI module. For calling the event handler, first, the event handler
should be taken and the status of the event object should be changed. RtOpenEvent()
plays the role of opening the handler of a particular event and receives as arguments
the access method to the event object and whether the returned handler can be in-
herited. In addition, it also receives the name of an event object as argument. After
taking and using the event object handler, the handler should be closed by RtClosed-
Handle(). After RtSetEvent() is called, the above thread function is resumed.

// *********************************************************** //
// Description: Open the created Event object. //
// *********************************************************** //
hStartEvent = RtOpenEvent(EVENT MODIFY STATE, TRUE,
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“NCKSTARTEVENT”);
RtSetEvent(hStartEvent);
RtCloseHandle(hStartEvent);

10.5 Open-CNC Systems

After development by MIT in the early 1950s, CNC systems have advanced with
the appearance and advancement of the microprocessor. With the introduction of
automation systems in the 1970s, the function of CNC systems has made rapid
progress. However, due to the complexity of NC technology, which requires not
only fundamental control function but also various auxiliary technologies such as
machining technology, process planning technology, and manufacturing technology,
the market for NC systems has been dominated by a few market leaders in Japan and
Germany. The advanced manufacturers evolved CNC systems into closed systems
in order to prevent their own technology from leaking out and keeping their market
share.

However, after the middle of the 1980s, a new manufacturing paradigm, where
computer network and optimization techniques were applied to manufacturing sys-
tems with the progress of computer technology, has appeared together with the re-
quirement for advanced control functions for high-speed and high-accuracy machin-
ing. Closed CNC systems were not adequate for realizing the new manufacturing
paradigm. The architecture of closed CNC systems could not meet the user’s re-
quirements and improvement of CNC systems was possible, not by MTB (Machine
Tool Builders) but CNC makers. The limited resources of CNC makers made it im-
possible to meet the new paradigm.

Therefore, various efforts to develop open CNC systems have been tried. As a
typical result of these attempts, PC-NC that was introduced in the early 1990s. Like
IBM PC technology, which appeared in the early 1980s, has progressed by third-
party developments based on openness, CNC systems have progressed to PC-NC
based on the openness of PC technology. However, now, despite low price, openness,
and many developers of PC-NC, the lack of reliability and openness to application
S/W has made it impossible to implement perfectly open systems.

10.5.1 Closed-type CNC Systems

For better understanding of Open-CNC systems, a conventional CNC system, the
Closed CNC system contrasted with the Open-CNC system will be addressed.

In terms of functionality, a CNC system consists of the NCK function, which
executes the interpretation of a part program, interpolation, acceleration and decel-
eration control, position control, and compensation algorithm, the MMI function,
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which provides the interface to enable a user to operate a machine, edit a part pro-
gram, communicate with external systems, and watch the status of the machine, and
the PLC function, which controls auxiliary functions such as tool change, spindle
control, and input/output signal control. Details of these functions were introduced
in previous chapters. The architecture and functionality of a CNC system that is typ-
ically used on the shop floor are designed as shown in Fig. 10.18.
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Fig. 10.18 Architecture and functionality of a typical CNC system

A CNC system to execute MMI, NCK, PLC modules has a closed architecture
that has no way to communicate to a third party system. Like the architecture of
a typical PC system the main CPU unit that carries out each module consists of a
main processor, ROM for storing system programs, RAM for storing applications,
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and keyboard and display unit for user interface. These are connected using a system
bus.

However, unlike a PC, a CNC system has analog/digital input/output devices for
communication with the machine and communication interface. In the past, in CNC
systems, communication between NC equipment and motors and drives was done
by analog signals and the communication interface was very simple. Because of the
problem of noise, digital communication has now typically come to be used and
SERCOS is a typical digital communication method. With the usage of fiber optical
cable, digital communication makes the exchange of various data and the removal of
noise possible. Therefore, it is becoming possible that the CNC system adjusts the
parameters of servo drives and motors directly and that the CNC system monitors
the status of the servo system in real time. Improvement of machining accuracy has
become possible due to the removal of noise. In addition to communication with the
servo system, digital communication has been applied to communication with in-
put/output devices. In order to enable communication with a variety of sensors and
machine components via a single communication line, a standardized communica-
tion method is required. For this, various kinds of field bus, such as Profi-bus, CAN
Bus and InterBus-S, have been introduced, but one standard method has not yet been
established.

Because of the closed nature of the architecture, users and MTBs (Machine Tool
Builders) cannot add some functions to the CNC system mentioned above or would
have to pay a lot of money to the CNC maker to add them. From the position of
the MTBs, though, this closed nature is a weapon for dominating the market. The
problems that users raised are summarized in Table 10.7. In order to meet the re-
quirements of users, it is necessary to develop open systems where the functions can
be reconfigured and extended and standardized communication protocols, hardware,
and interfaces are applied.

10.5.2 Open CNC Systems

To overcome the drawbacks of the closed CNC system, an open CNC system has
been developed. In this section, the concept, definition, and architecture of an open
CNC system will be addressed.

10.5.2.1 Target of Open-CNC Systems

As mentioned in the previous section, the closed architecture makes it difficult to add
sensors for process monitoring or machine control. Nor does it not provide flexibility
to adapt the CNC system to a variety of machines and a variety of purposes. In addi-
tion, since in the closed architecture the scalability of the function and the standard
interface for exchanging the data with other systems are not provided, only one kind
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Table 10.7 Requirements for closed CNC systems

Item Requirement
Reconfigurability In the case of machining an engine cylinder block

of a car, about 80% of machining does not require
high precision machining and not and only hole
drilling and plane milling are performed. The CNC
system used in this machining does not require a
variety of functions in the user interface but
functions about automation. Therefore, the
functionality of the CNC system can be added to
or subtracted from according to the user’s
requirements.

Extensibility The hardware and software, such as the number
of controllable axes, cycle program, and program
storage are independent in terms of functionality.
They can be reconfigured if needed.

Program Part programming and macro programming based
on EIA are very complicated and each CNC maker
provides their own special functions. In the case
of using CAD/CAM, there are many problems with
exchanging data between software programs and
devices. To solve these problems, a new CNC
programming language is required.

Advanced function In the case of milling machining for mold and
die, surface interpolation functions for machining
free-form surfaces are needed in order to avoid
grinding operations for post-milling operations.
Sensor-based feedback control for high-precision
machining is also needed. Therefore, when it is
necessary to apply new technology, the addition
of new functions should be possible.

Intelligence The cutting conditions for machining should be
determined depending on the diameter of the tool
and the materials of the workpiece and tool. As
the selection of cutting conditions requires much
know-how, automation of the selection in the CNC
system is insufficient and an intelligent CNC
system is required for optimal process planning
and optimal toolpath generation.

Standardization Despite the fact that a variety of machines
are used together in the field, they cannot comm-
unicate with each other unless their CNC equip-
ment is the same. A CNC system has limitations
on communication with PC and FA controllers. In
addition, the options provided by CNC makers
depend on the CNC makers and are expensive.
To solve these problems, standardization and
openness are required.



10.5 Open-CNC Systems 391

of CNC system exists for one kind of machine and it cannot exchange hardware,
software, and data with other CNC systems.

Since monitoring of processes and the control tasks based on the monitoring are
executed simultaneously, in the CNC system that enables it has been necessary to add
new sensor-based algorithms in the control/monitoring module in order to expand
the functionality of CNC systems. It is also necessary to create a CNC system where
real-time change of algorithms and control architecture is possible, sensed data are
shared, and communication with other systems is possible.

The need for open systems has not been raised by CNC makers but by MTBs and
users. Together with the requirement of MTBs and users, CNC makers accepted this
trend to adopt quickly new technology with low cost. For example, suppose that an
MTB/user applies a sensor based on a particular Field Bus to a CNC system or wants
to add particular software. In this case, the CNC maker provides an environment to
enable a third party to create the functions that are better than those developed by the
CNC maker.

An open system is defined as a system that satisfies the following:

1. Interoperability: This means the ability that the components that compose the
system cooperate to perform the specified task. For this ability, the standard spec-
ifications of the data representation language, behavior model, physical interface,
communication mechanism, and interaction mechanism are needed. A bus-based
system design is most important.

2. Portability: This means the ability for a component to be executed on the CNC
system with different hardware or different software. Portability is very important
from the commercial point of view. Since this means that a hardware device or a
software module can be used on various platforms, it contributes to increasing the
efficiency of a platform.

3. Scalability: This means the ability to make extensions to or reductions of the
system’s functionality possible without large cost. Adding memory or a board to
a PC is a typical example.

4. Interchangeability: This means the ability to replace the existing component with
a new component. Instead of replacing the whole system, replacing an existing
motion board with a motion board with a new algorithm is a typical example.

As the definition of an open system, modularity, extensibility, reusability, and
compatibility can be considered. However, these can seem to belong to the above
properties. From another point of view, an open system can be defined as a sys-
tem with flexibility and standardization. Flexibility, though, has a similar meaning
to interoperability and scalability and standardization are similar to portability and
interchangeability.

10.5.2.2 Classification of an Open System

The openness of a CNC system should include the openness not only of stand-alone
units but also FA systems. Therefore, besides the development of special-purpose
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systems by modularization of system components and standardization of platforms
and interfaces between modules, it is necessary to make integration between the
devices made by various vendors easy with optimized integration of existing compo-
nents. The development of an open system has progressed as shown in Fig. 10.19. As
the first step, a system with open environment controller, with each piece of equip-
ment connected to another via an open communication network. As the second step, a
system with open environment common interface controller, portability, interchange-
ability, and scalability can be realized. As the last step, a system with open modular
architecture controller, a variety of applications based on distributed network tech-
nology and component technology can be implemented.

Proprietary
Controller

Open
Environment
Controller

Open
Environment
Common Interface
Controller

Open Modular
Architecture
Controller

Fig. 10.19 Progress of Open System development

Until the late 1990s much effort for establishing the open environment had been
made. From the early 2000s the development of an open CNC system has progressed.

In the terms of the system architecture, an open CNC system can be classified
into three types, as shown in Fig. 10.20. MMI and NCK including the PLC unit ex-
change data via a particular communication module. As Type 1, shown on the left,
is Open MMI, NCK is closed and only allow data exchange with MMI. In Type 1,
MMI is divided into a basic area and a special area. In the basic area, the funda-
mental functions of MMI are located. In the special area, the special functions (e.g.,
conversational programming system, CAD/CAM, production management system,
and tool database) are located. This type makes it possible for the MTB and user to
develop and use the user-specified MMI. The majority of commercial CNC systems
have been developed based on this architecture.

Type 2 denotes the architecture where new functions can be added to NCK as
well as MMI. By modularizing the core functions of NCK, adaptation of new algo-
rithms is possible. However, since the openness is not reflected in the design of the
whole system architecture, the problem of the interface between modules and their
compatibility results when this architecture is applied in practice.

Type 3, the rightmost in Fig. 10.20, denotes the architecture where system soft-
ware and application software in MMI and NCK are modularized and the communi-
cation interface between them is standardized. This makes extensibility and compat-
ibility possible.

As Type 1 and Type 2 are semi-open architectures compared with Type 3, they are
practical considering that they make it possible to add new functionality only with
partial modification of a conventional closed architecture. However, CNC systems
of Type 1 or Type 2 cannot change or modify a part of hardware or software with-
out knowledge of the interface and dependency of each module. In contrast, Type 3
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Fig. 10.20 Open CNC System classification

CNC systems can modify or replace modules independently owing to the full open
architecture.

10.6 Summary

PC-NC, being the alternative for replacing a closed and expensive hardware-based
NC, is distinguished from the traditional hardware-based NC in terms of hardware
architecture, software model, and communication mechanism. The configuration of
PC-NC is classified into the following three types:

1. PC is used for MMI and the closed-type motion control boards for NCK and PLC
are inserted into the PC.

2. Two PCs are used for MMI and NCK/PLC, respectively. The two PCs are con-
nected via high-speed communication.

3. MMI, NCK, and PLC are implemented as software tasks operating in a multi-
processing environment using a single CPU.

In particular, the third configuration, where a single CPU is used and CNC func-
tions are implemented in software, is called Soft-NC. In Soft-NC, NCK, PLC, and
MMI are regarded as individual tasks and are executed by the scheduler of a real-time
OS. In this configuration, the volume of hardware is reduced. Unlike the closed-type
NC and other types of PC-NC, it is easy to add user requirements, modify functions,
and link to other applications by utilizing various functions from real-time OS.

In terms of Soft-NC design, a variety of modules are regarded as tasks and they
can be divided into non-cyclic tasks and cyclic tasks. A non-cyclic task is a task that
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does not require tight response time, such as MMC, interpreter, and external com-
munication manager. A cyclic task is a task that requires the hard real-time property.
For developing Soft-NC, it is necessary to design a scheduler, synchronization be-
tween tasks, and communication between tasks. Moreover, this design is realized by
real-time programming techniques.



Chapter 11
STEP-NC System

With the rapid advancement of information technology associated with NC technol-
ogy, the manufacturing environment has changed significantly since the last decade.
However, the low-level standard, G&M codes, have for over 50 years been used as
the interface between CAM and CNC, and are now considered as an obstacle for
global, collaborative and intelligent manufacturing. A new model of data transfer
between CAD/CAM systems and CNC machines, known as STEP-NC, is being de-
veloped worldwide to replace G&M codes. In this chapter, we will give an overview
of STEP-NC and its related technology, including data models for STEP-NC, CNC
systems based on STEP-NC, namely STEP-compliant CNC systems, together with
worldwide research status and future prospects.

11.1 Introduction

A designer, “A” makes a 3D design by ANYCAD system in Korea. A CAM specialist
“B” in the USA generates a process plan by ANYCAM system for manufacturing the
design transmitted through the internet. Operator “C” in South Africa downloads the
design and its process plan and executes the ANYCNCFRONT simulator, followed
by machining with ANYMACHINE controlled by INTELLIGENT CNC as shown
in Fig. 11.1. When the operator clicks on “Cycle Start” button, machining is started.
During the machining operation, the INTELLIGENT CNC controls the machining
operation precisely in an optimized fashion (feedrate optimization) with adaptive ca-
pability in handing unexpected situations such as tool wear/breakage/unavailability.
After machining, INTELLIGENT CNC reports to the stakeholders in the worldwide
chain the machined results including the accuracy of the machine part compared
with the geometry and tolerance information of ANYCAD measured by the on-
machine inspection module of INTELLIGENT CNC. Except for the machining time,
the whole information transaction period is in the order of a few minutes.

This scenario is not fiction, but can be achievable by using STEP and STEP-NC.
STEP-NC aims at providing an information bus for manufacturing running in the

395
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world via the internet and that the various stakeholders of CAD, CAM, CNC require
for realizing seamless DA-BA-SA (Design-Anywhere, Build-Anywhere, Support-
Anywhere), which has become the catch phrase of e-Manufacturing. Also, STEP-
NC aims at realizing intelligent CNC having optimization and adaptability capabil-
ity. Toward these aims, efforts for standardization, research and development are in
progress worldwide.

CAD
in Germany

CAM
in FranceCAM

in USA

CAD
in Republic

of Korea

Machine shop
in Brazil

Machine shop
in South Africa

INTERNET

Fig. 11.1 e-Manufacturing for DA-BA-SA

As STEP-NC has been approached by many affiliations, institutions, companies
from a variety of perspectives, there are several jargon expressions, or terminology
related to STEP-NC. Thus, before getting into detail, we clarify the following termi-
nologies. Note that the definitions below are from the best knowledge of the authors
working in this area for a long time, but other people might have different meanings
for these.

• STEP-NC: Two meanings are used in a narrow and broad sense. In a narrow
sense, STEP-NC means the new interface language between CAM and CNC. In
a broad sense, STEP-NC includes not only the new interface language but also
technologies to implement CAD/CAM and CNC software or products based on
the new interface. In this book, STEP-NC is used to mean the new interface lan-
guage; i.e., the narrow meaning of STEP-NC.

• ISO 14649: ISO 14649 is an international standard specification defining the data
model for STEP-NC. It specifies information contents and semantics (ICS) for
various CNC manufacturing processes and resources including cutting tools and
machine tools. The contents will be explained in Section 11.4.

• STEP-NC data model: STEP-NC data model means the contents of ISO 14649.
In other words, it is the same as the narrow meaning of STEP-NC.

• STEP compliant CNC: STEP-compliant CNC means a kind of new CNC con-
troller implementing STEP-NC, i.e. taking STEP-NC as input and controlling the
machine tool motion. Depending on how the STEP-NC is interfaced and used,
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STEP-compliant CNC is classified into 3 types: 1) Type 1; Conventional, 2) Type
2; Basic, and 3) Type 3; Intelligent. The details will be discussed in Section 11.5.

• STEP-CNC: STEP-CNC is an abbreviation of STEP-compliant CNC.
• STEP-NC technology: STEP-NC technology means various technologies re-

quired for implementing software and products based on the STEP-NC interface.

The remainder of this chapter is organized as follows. In Section 11.2, we will
introduce problems of current G&M codes and the historical background to STEP-
NC. In Section 11.3 we will give an overview of STEP-NC, including information
contents, structures, objectives and impacts. In Section 11.4 we will explain details
of the STEP-NC data model, followed by interpretation and part programming in
Section 11.5. In Section 11.6, technologies for implementing STEP-compliant CNC
are illustrated and the world wide research and development status together with
future prospects of STEP-NC and STEP-NC technologies are given in Section 11.7.

11.2 Background of STEP-NC

11.2.1 Problems with G&M Codes

The manufacturing environment has been changing, with more collaboration and
intelligence since the 1990s. High-speed machining, high-precision machining and
multi-axis complex machining have extensively enhanced the productivity and qual-
ity of manufacturing. Furthermore, advanced internet technology has introduced a
new paradigm of e-Manufacturing so that DA-BA-SA can be realized via the col-
laborative scheme of a distributed manufacturing system. Toward this goal, however,
the machine language, the so-called G&M codes (formalized as ISO 6983 by ISO or
similarly RS274 in USA, DIN 66025 in Germany) used for CNC since the invention
of NC technology in the early 1950s is the major bottleneck in information-based
manufacturing systems. Because ISO 6983 was developed at a time when computer
power was limited and machines were controlled offline the needs and possibilities,
then, were very different from those of today. These machines used simple instruc-
tions to move tools through the air and for cutting metal. In particular, the problems
of G&M codes have been reported as follows:

• Information loss
A G&M-code part program is defined by simple alphabetical or numerical codes
such as G, T, M, F, S indicating the movement of a machine and an axis to the
controller. Since this delivers only limited information to the CNC (excluding
valuable information such as part geometry and the process plan used to generate
the NC code), it makes the CNC simply an executing mechanism, completely
unaware of the motions being executed.
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• Difficult traceability
As a G&M-code part program is made up of a coded set of numbers for axis
movements, it is not easy for machine operators to understand the operational
flow, machining condition and specification of tools only by reading the low-level
part program. In particular, it makes it more difficult, not only in finding which
part happens to cause problems, but also modifying the program for solving these
problems.

• Lack of interoperability
The G&M code schema is dependent on the machine tool builder or controller
maker. For example, G70s and G80s mean cycle codes, G98 orders feed per
minute in the FANUC 0 series. On the other hand, G60s and G80s mean cy-
cle codes, G94 instructs feed per minute in the FAGOR 8055T series. The part
program for a certain targeted controller cannot be applied to another heteroge-
neous controller. For this reason, it is necessary to apply a post-processing process
in which the program is adapted to a specific CNC machine configuration. This
post-processing is one of the main interferences with the seamless data flow in the
CAD-CAM-CNC chain.

• Non-compatibility with higher level systems
In higher-level manufacturing systems, such as office level CAD/ CAPP/ CAE/
CAM/ PDM/ MRP, compatible information exchange is being increased gradually
by the introduction of STEP. In contrast, the rich information environment has
almost perished at the CNC on the shop floor level. Also, there is little information
feedback from the CNC, which makes the shop floor status obscure to the upper
systems. Inevitably, the CNC on the shop floor remains an isolated island in the
CAD-CAM-CNC chain.

11.2.2 Historical Background

The initial effort on the new CNC data model was made by WZL of Aachen Uni-
versity between 1994 and 1996 in the European Project OPTIMAL (ESPRIT III
8643). In this project, the data model for 3D milling was investigated based on the
STEP paradigm, in which STEP data was first used as the basis of the interface
scheme between CAM and CNC. This STEP-based interface scheme was extended
to 2.5D milling and other operations like turning and EDM in the subsequent Eu-
ropean Project ESPRIT IV 29708 - STEP-NC (STEP-compliant data interface for
Numerical Controls) between 1999 and 2001. The USA agreed with this feasible re-
search from Europe and actively joined this project from 1999. The STEP-NC project
has gained worldwide consensus, and was promoted to international IMS (Intelligent
Manufacturing Systems) status project 97006, composed of Europe, USA, Korea
and Switzerland from 2002. Recently, research and development for commercializa-
tion have been actively and collaboratively contributed by a large number of nations
including Brazil, Canada, China, France, Germany, Japan, New Zealand, Pakistan,
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South Korea, Switzerland, UK, USA and so on (alphabetical order). More details of
their research results will be discussed in Section 11.7.

11.3 STEP-NC: A New CNC Interface Based on STEP

STEP-NC is expected to encompass the whole scope of e-Manufacturing. The new
STEP-NC data model has been developed for the replacement of the old standard
G&M codes for milling, turning and EDM, and development on implementations
is under way. Now that the new data model has been established, development and
implementation of STEP-compliant CAD/CAM/ CNC systems based on the new
data model is drawing worldwide attention.

11.3.1 Contents

STEP-NC is a new model of data transfer between CAD/CAM systems and CNC ma-
chines. As shown in Fig. 11.2a, G-code contains just axis movement, spindle speed,
feedrate, tool position in the tool changer and coolant. With this information, it is
very difficult for machine operators to understand the operational flow, machining
conditions and specification of tools only by reading a part program. Also, it is im-
possible for the CNC controller to execute an autonomous and intelligent control and
to cope with emergency cases with this limited information. In contrast, STEP-NC
contains the required functional information, as shown in Fig. 11.2b, such as work-
ingstep, machining feature, machining operation, machining tool, machining strat-
egy, machine function and workpiece. In other words, STEP-NC includes a much
richer information set including ‘what-to-make’ (geometry) and ‘how-to-make’ (pro-
cess plan).

depicts the relationship between STEP (ISO 10303) and STEP-NC (ISO 14649).
2.5D machining features in ISO 14649 use those from ISO 10303 AP 224 and the
free-form surface information references from the 3D design information of ISO
10303 AP 203. The expressive language of data model schema applies ISO 10303
Part 11 (EXPRESS) and the implementation method for the file format complies with
ISO 10303 Part 21 (clear text encoding rule) and ISO 10303 Part 28 for XML.

STEP-NC is under development by ISO TC 184 (Technical Committee in In-
ternational Standardization Organization) SC1 and SC4 (Sub-Committees 1 and 4).
Strictly speaking, there are two versions of the STEP-NC data model. The first is the

STEP-NC adopts the definition of STEP or modifies it according to CNC. Figure 11.3

11.3.2 Relationship Between STEP and STEP-NC



400 11 STEP-NC System

G50 X100. Z50. S2800 T0100;
G96 S180 M03;
G00 X42. Z0.1 M08;
G01 X0.0 Z0.1 F0.2;
G00 X35.0 Z1.1;
G01 X35.0 Z-39.9;
G00 X36.0 Z2.0;
G00 X30.4 Z2.0;
G01 X30.4 Z-39.9;
G00 X31.4 Z2.0;
G01 X25.0 Z2.0;
G01 X25.0 Z-15.9;
G00 X26.0 Z2.0;
G00 X20.4 Z2.0;
G01 X20.4 Z-15.9;
G01 X100.0 Z50.0;
T0300;
G00 X22.0 Z0.0 S220;
G01 X0.0 Z0.0 F0.15;
G00 X20.0 Z1.0;
G01 X20.0 Z-16.0 F0.2;
G01 X30.0 Z-16.0;
G01 X30.0 Z-40.;
G01 X42.0 Z-40;
G00 X100. Z50. M09;
M05;
M02;

Spindle speed

Instruction

Axis movement

Tool

Feedrate

Miscellaneous
function

(a) G-code part program

#10=MACHINING_WORKINGSTEP(’FACING_ROUG
H1’,#7,#80,#20,$);
#11=MACHINING_WORKINGSTEP(’CONTOURING_
ROUGH1’,#7,#81,#21,$);
#12=MACHINING_WORKINGSTEP(’FACING_FINIS
H1’,#7,#81,#23,$);
#13=MACHINING_WORKINGSTEP(’CONTOURING_
FINISH2’,#7,#80,#22,$);
...
#20=FACING_ROUGH($,$,’CIRCULAR_FACE1’,50,#
112,#30,#40,#50,#60,#61,#70,0.1);
...
#30=TURNING_MACHINE_TOOL(’T0100’,#31,(#33),
120,40,$);
...
#40=TURNING_TECHNOLOGY($,.TCP.,#41,0.23,.F.,.
F.,.F.,$);
...
#50=TURNING_MACHINE_FUNCTION(.T.,$,$,(),$,$,
$,(),$,$,S);
...
#70=UNIDIRECTIONAL_TURNING($,.F.,(1.9),$,#114,
#115,$,$,S,$,$);
...
#80=REVOLVED_FLAT(’REVOLVED_FLAT1’,#3,(#2
0,#22),#122,#126,20,#127);
#127=LINEAR_PROFILE(’REVOLVED_FLAT_RADI
US’,#128,1);
...

Machining operation

Workingstep

Machining tool

Machine function

Machining strategy

Technology

Manufacturing feature

(b) STEP-NC part program

Fig. 11.2 Comparison of G-code part program and STEP-NC part program
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TextISO 10303 (STEP)

reference uses features use
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(Free-form surfaces) ...Two5 D manufacturing

features
Turning
features

STEP AP
3D

STEP
Machining

Fig. 11.3 The relationship between ISO 14649 and ISO 10303

Application Reference Model (ARM), i.e. ISO 14649, which describes machining
processes in terms of domain terminology. The second is the Application Interpreted
Model (AIM), i.e. ISO 10303 AP (Application Protocol) 238, which maps the ARM
to the existing integrated resources of the STEP (STandards for Exchange of Product
data model formalized as ISO 10303). In this text, we refer to ISO 14649 as the data
model for STEP-NC.

Recently, STEP-NC has been harmonized with the STEP set of standards as
ISO 10303 AP238, which offers the possibility of seamless integration of applica-
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tion throughout design and manufacturing. This effort is for realizing information-
based manufacturing, namely the suite of STEP-Manufacturing recommended by
ISO TC184 SC4 and SC1. The suite shows the functions and associated information
standards in terms of STEP APs, as shown in Fig. 11.4. The input to the STEP-NC
system is AP203 and/or AP224, and the output is STEP-NC codes. Functions and
information within the STEP-CNC system are from macro-process-planning based
on AP240, followed by micro-process-planning (ISO 14649).

STEP In, STEP Out,
STEP Threoughout

Function

Standards

STEP
Prioduct Data

Generation

AP224
OR

AP203E2

Macro
Process

Planning

AP240AP224
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NC programming

ISO 6983
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AP240
with

Feature

AP240

AP238 ISO 14649

Inspection
AP219

Input from
Micro PP

CMM

Finisged Part

Shop
Floor

(DESIGN) (FACTORY) (FACTORY) (FACTORY)

ISO 6983
M&G Codes

Fig. 11.4 Suite of STEP-Manufacturing

11.3.3 Objectives and Impacts

According to Part 1 of ISO 14649, the objectives of the STEP-NC data model are as
follows:

• To cover the current and expected future needs for data exchange
• To support the direct use of computer-generated product data from ISO 10303
• To create an exchangeable, workpiece-oriented data model for CNC machine

tools
• To use standard, modern languages and libraries for the implementation of the

data model
• To ensure compatibility of CNC input data

The impact of the new interface scheme is most felt in the CAD-CAM-CNC chain
as follows:
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• In the sense that the STEP-NC data model is an extended product data model
including process plan information, it can be used as an information highway
encompassing CAD, CAPP, CAM, and down to CNC.

• At the CAD-to-CAM level between design and manufacturing, the NC extension
parallels STEP’s overall ability to facilitate seamless data flow in B2B cases.

• Because the 3D model can be sent directly to manufacturing, a time saving of 75%
can be achieved, according to an analysis by Hardwick, as shown in Fig. 11.5.

• Further, because the new data model defines all the information for process plan-
ning, the process planning step can be greatly simplified, saving from 35% to 60%
from the time normally required for the step (Fig. 11.5).

• From the perspective of CNC, the new data model is very significant, providing
CNC with all the information about what to make and how to make it. According
to a survey, a time saving of 50% is reported (Fig. 11.5).

• Currently, for machining with G-code, a post-processor is required to convert
the process plan from product space to machine space, as shown in Fig. 11.6a.
However, with the wide adoption of STEP-NC the requirement for these post-
processors will be eliminated, as illustrated in Fig. 11.6b.

• Depending on the implementation, there can be many other tangible benefits
that cannot be measured by time, such as machining accuracy, quality improve-
ment, automatic part setup, on-machine inspection, automatic collision avoidance,
among others.

35% faster 50%
faster

75%
faster

e-Design e-Manufacturing

STEP
(ISO 10303)

STEP-NC
(ISO 14649)

CAD CAM CNC

Fig. 11.5 Time reduction effects in the CAD-CAM-CNC chain of STEP-NC

11.4 STEP-NC Data Model

Since ISO 14649 was published as a CD (Committee Draft) version in 1997, it is now
almost in IS (International Standard) version except for Part 111, which is the FDIS
version. Table 11.1 shows the current status of ISO 14649 parts including future
work items that are either in WD (Working Draft) or CD versions. Part 1 provides an
introduction and overview of a data model for CNC including the advantages. Part
10 specifies the process data that is generally needed for NC-programming within all
machining technologies and other 1x Parts technology-specific process data such as
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(a) One-to-one G-code post processor (b) one-to-many STEP-NC interface

Fig. 11.6 ISO Three levels of ISO 14649 data model

milling, turning, wire EDM, sink EDM, contour cutting, inspection and rapid pro-
totyping. Part 110 describes the requirement model for the machine tool executing
the STEP-NC part program, which is currently NWIP (New Work Item Proposal) as
of September 2007. Part 1xx describes tools for each process such as Part 111 for
cutting tools for milling and Part 121 for cutting tools for turning.

Table 11.1 ISO Current status of Parts in the ISO 14649 (December, 2007)

ISO 14649 Title of documents Edition Status
Part 1 Overview & fundamental principles 1 IS
Part 10 General process data 1 IS
Part 11 Process data for milling 1 IS
Part 12 Process data for turning 1 IS
Part 13 Process data for wire-EDM 2 CD
Part 14 Process data for sink-EDM 2 CD
Part 15 Contour cutting 2 WD
Part 16 Process data for inspection 2 WD
Part 17 Process Data for rapid prototyping 2 WD
Part 110 Machine tools for general process 2 NWIP
Part 111 Tools for milling machines 1 FDIS
Part 121 Tools for turning machines 1 IS
IS : International Standard, CD : Committee Draft,
WD : Working Draft, NWIP : New Work Item Proposal,
FDIS: Final Draft International Standard

11.4.1 Part 1: Overview and Fundamental Principles

Part 1 describes an introduction and overview of a data model for CNC, AAM (Ap-
plication Activity Model), and usage scenarios. It describes the fact that the ISO
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14649 data model is composed of three levels as shown in Fig. 11.7. Level A deals
with the modeling of the manufacturing technologies in the Application Reference
Models (ARMs) with a precise description in EXPRESS schemas. Level A is the
responsibility of ISO/TC184/SC 1/WG 7. Level B deals with integration and com-
patibility with ISO 10303, based on the Application Interpreted Models (AIMs) that
map the ARMs to the set of ISO 10303 integrated resources. Level B is the responsi-
bility of ISO/TC 184/SC 4. Level B covers also the data exchange and compatibility
needs. Based on actual STEP standards, different data formats can be used in the
databases and to transfer exchangeable data to the CNC controllers, such as ISO
10303-21, ISO 10303 SDAI database and the most actual and advanced ISO 10303
data server with EXPRESS-X queries and data formatted in XML (ISO 10303-28).
Level C deals with adoption software, which is the implementation of Level A or B
in controllers. CNC manufacturers or third parties are responsible for implementing
Level C.

Other implementations

Vendor-specific CNC

ISO 14649 Data Model for
Computerized Numerical Controllers
Part 1: Introduction
Part 10 : General Process Data,
Sequencing, and Execution 

ISO 14649 Extensions

Part 11, 111
Milling,
Milling Tools

Part 12
Turning

Part 13
EDM

Level A
Process Data
Models
Responsibility of ISO
TC184/SC1/WG7

ISO 14649 Mapping to
ISO 10303 Integrated Resources
(General Process Data included
  in APs)

ISO 14649 Extension Mappings
AP 2xx
Milling

AP 2yy
Turning

AP 2zz
EDM

Level B
Mapping to ISO
10303 Integrated 
Resources
(APs includes 
Conformance Testing)
Responsibility of ISO SC4

ISO 10303 Database
with Standard Data
Access Interface (SDAI)

ISO 10303 Part 21 files
from AP schemas

ISO 10303 Data Server
with EXPRESS-X Que-
ries and results formatted 
in XML (Part28)

Vendor-specific CNC

Implementation based on 
EXPRESS tools for ISO
10303 Part 21 Physical Files

Vendor-specific CNC

Implementation based 
ISO 10303 Database

Vendor-specific CNC

Implementation based 
on XML
ISO 10303 Database

Level C
Adoption Software

Responsibility of CNC
Vendors

Fig. 11.7 ISO three levels of ISO 14649 data model

The most important feature of the ISO 14649 data model is to remedy the short-
comings of ISO 6983 by specifying machining processes rather than machine tool
motion, using the object-oriented concept of the workingstep. Workingsteps are the
essential building blocks of manufacturing tasks. Each workingstep describes a sin-
gle manufacturing operation using one cutting tool. Figure 11.8 shows the overall
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structure of ISO 14649 from the viewpoint of the workingstep. The order of execu-
tion of manufacturing operations is given by the order of workingsteps that a work-
plan has. The project entity serves as a starting point for executing the part program.
The workingstep describes what (machining feature) is machined and how (machin-
ing operation) to remove with (machining tools) which tools. Machining operation
includes machining tool, machine functions, machining strategy and other process
data.
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A. Task description
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...
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...
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Fig. 11.8 Overall architecture of ISO 14649 ARM

11.4.2 Part 10: General Process Data

Part 10 specifies the execution sequence of the part program and the general process
data for NC-programming. The sequence of execution of the part program is repre-
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sented by program structure, and the general process data by manufacturing feature
and machining operation, respectively.

Figure 11.9 shows the information contents for the sequence of the part program.
Program structures are used to build logical blocks for structured programming of
the manufacturing operation. The program structures, not the list of manufacturing
features, have authority over the actual manufacturing sequence. Non-linear process
planning, one of the most powerful advantages of ISO 14649, is possible by us-
ing non-sequential, parallel, selective entities. The most important structure is the
workplan that provides a linear sequence of executables. The workingsteps repre-
sent the essential building blocks of an ISO 14649 part program. They can either
be technology-independent actions, like rapid movements or probing operations, or
machining workingsteps that describe manufacturing or handling operations that in-
volve interpolating axes. NC-function describes manufacturing or handling opera-
tions that do not involve interpolation of axes, for example, switching operations or
other singular-event machine functionality.

(ABS) Executable

(ABS) NC_function (ABS) Workingstep (ABS) Program_structure

(ABS)Touch_probing

Rapid_movement
Machining_workingstep

1
Workplan

Parallel
If_statement

While_statement

1

AssignmentManufacturing_feature

Machining_operation

its_feature

its_operation

1

Fig. 11.9 EXPRESS-G diagram for executables

Related to the general process data, the major entities defined in Part 10 are
manufacturing feature, which defines 2.5D and 3D machining features, machin-
ing operation that defines the types of the operations, machining strategy that defines
various strategies, technology that defines feedrate and spindle, machine functions
that defines coolant, chip removal, and tool path that defines pre-defined tool paths.
Part 10 has the common operational information for all machining, while detailed
information for each manufacturing type, such as milling or turning, are defined
in each Part of ISO 14649. For example, Fig. 11.10 shows the structure of man-
ufacturing feature. Manufacturing feature has four subtypes and each subtype has
its own subtypes. In detail, Two5D manufacturing feature has two subtypes, ma-
chining feature and replicate feature and machining feature has many subtypes for
milling features such as step, slot, pocket, hole, and so on.
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Fig. 11.10 EXPRESS-G diagram for manufacturing features

11.4.3 Part 11: Process Data for Milling

Part 11 specifies the technology-specific data elements needed as process data for
milling. It can be used for milling operations on all types of machines, such as
milling machines, machining centers, and lathes with motorized tools capable of
milling (i.e. complex machine tools). Part 11 describes the technology-specific data
types representing the machining process for milling and drilling. Figure 11.11
shows the structure of the milling machining operation. It is a subtype of ma-
chining operation, defined in Part 10 and has three subtypes: freeform operation,
two5d milling operation, and the drilling type operation. Each of these has its own
associated machining strategy. Examples include freeform strategy, two5d milling -
strategy or drilling type machining strategy, respectively, as shown in Fig. 11.12. In
addition, Part 11 also defines elements such as approach retract strategy at the be-
ginning or end of the operation, milling machine functions for milling, and milling -
technology for milling.

11.4.4 Part 12: Process Data for Turning

Part 12 defines the technology-specific data elements needed as process data for turn-
ing. The relationship between Part 10 and Part 12 is similar to that of Part 10 and Part
11. The difference is that turning feature is defined in Part 12. As turning features
are different from milling features and can be machined only in turning machines,
they are defined in Part 12. Figure 11.13 shows the structure of the turning feature
and Fig. 11.14 shows the operations defined in Part 12.
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Fig. 11.11 EXPRESS-G diagram for machining operation in Part 11
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Fig. 11.12 EXPRESS-G diagram for machining strategy in Part 11

11.4.5 Tools for Milling and Turning

This section deals with Part 111: “Tools for milling machines” and Part 121: “Tools
for turning machines”.

Part 111 and Part 121 define data elements describing cutting tool data for milling
machine tools and machining centers and for turning machine tools, respectively. In
ISO 6983, the tool is defined by its identifier (e.g. T8) and no further information con-
cerning the tool type or geometry is given. This information is part of the tool setup
sheet, which is supplied with the NC-program to the machine. However, ISO 14649
includes this information in the part program, such as tool identifier; tool type; tool
geometry; application-dependent expected tool life. These data elements can be used
as criteria to select one of several operations; they do not describe complete informa-
tion of a particular tool. Therefore, leaving out optional attributes gives the controller
more freedom to select from a larger set of tools. Part 10 defines machining tool as
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Fig. 11.13 EXPRESS-G diagram for turning feature
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Fig. 11.14 EXPRESS-G diagram for turning machining operation
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a supertype of milling machine cutting tools and turning machine cutting tools that
are defined in Part 111 and Part 121 respectively. Figures 11.15 and 11.16 show
the structure of the milling machine cutting tool and turning machine cutting tool
elements.
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Fig. 11.15 EXPRESS-G diagram for milling machine cutting tool

11.5 Part Programming

Based on the data model, the STEP-NC part program is represented as a physical file
according to ISO 10303 Part 21: Clear Text Encoding Rule. As shown in Fig. 11.18,
the STEP-NC part program is divided into the header section and the data section.
The header section includes information with regard to the part program itself, such
as the author information, schema information and version of the part program. The
data section includes all the information about the manufacturing such as process se-
quence, manufacturing feature, operation type, machining strategy, machining tech-
nology, machine function, workpiece and geometry. In this subsection, STEP-NC
part programs for milling and turning will be described.



11.5 Part Programming 411

machining_tool(Part 10)

(ABS)turning_machine_
cutting_tool

length_measure

length_measure

length_measure

length_measure

length_measure

2. 1. cutting_edge_properties

length_measure

[left, right, neutral]

general_turning_tool 3. 2.turning_threading_tool 3. 1.grooving_tool

3. 3.Knurling_tool 3. 4.user_defined_turning_tool

1

functional_length

f_dimension

minimum_cutting_diameter

a_dimension_on_f

a_dimension_on_lf

cutting_edge

hand_of_tool

Fig. 11.16 EXPRESS-G diagram for turning machine cutting tool

11.5.1 Part Programming for the Milling Operation

Figure 11.17 shows a simple example for milling, described in Annex E of ISO
14649 Part 11. Figure 11.18 shows the overall structure of the STEP-NC part pro-
gram for the test part of Fig. 11.17. Note that the part program of Fig. 11.18 is just
a fraction of the whole program in order to reduce space. For the full version of this
part program, please refer to Annex E of ISO 14649 Part 11.

The shape of Fig. 11.17 includes a plane at the top face (planar face), a rect-
angular pocket (closed pocket) and a hole (round hole). In this section, machining
sequences and detailed information about a rectangular pocket and its machining
operation will be explained.

“Sequences” noted in Fig. 11.18 shows information about the machining sequence
that is used to machine the test part. Every STEP-NC part program starts with the
project entity (#1). The main purposes of the project are to define the sequence of
machining processes by using the main workplan (#2) attribute and to define the
workpiece information by using the workpiece (#4) attribute, which will be explained
later. In this example, five machining workingsteps are executed sequentially. Firstly,
the finishing operation for the planar face at the top (#10) is executed, and then
the drilling operation (#11) and reaming operation (#12) are executed sequentially



412 11 STEP-NC System

z

y
F1

1

z

x

y

P2

P1

F2

P3

P4 F3

x
20

25

50

100

30

50

30

80

120

R1

R1
0

Fig. 11.17 Simple example test part for milling

#1= PROJECT('EXECUTE EXAMPLE1',#2,(#4),$,$,$);
#2= WORKPLAN('MAIN WORKPLAN',(#10,#11,#12,#13,#14),$,#8,$);
#10= MACHINING_WORKINGSTEP('WS FINISH PLANAR FACE1',#62,#16,#19,
#11= MACHINING_WORKINGSTEP('WS DRILL HOLE1',#62,#17,#20,$);
#12= MACHINING_WORKINGSTEP('WS REAM HOLE1',#62,#17,#21,$);
#13= MACHINING_WORKINGSTEP('WS ROUGH POCKET1',#62,#18,#22,$);
#14= MACHINING_WORKINGSTEP('WS FINISH POCKET1',#62,#18,#23,$);

#18= CLOSED_POCKET('POCKET1',#4,(#22,#23),#84,#65,(),$,#27,#35,#37,#28);
#27= PLANAR_POCKET_BOTTOM_CONDITION();
#28= GENERAL_CLOSED_PROFILE($,#59);
#59= POLYLINE('CONTOUR OF POCKET1',(#121,#122,#123,#124,#121));

#22= BOTTOM_AND_SIDE_ROUGH_MILLING($,$,'ROUGH POCKET1',15.000,$,,#39,
         #50,#41,$,#60,#61,#42,2.500,5.000,1.000,0.500);
#60= PLUNGE_RAMP($,45.000);
#61= PLUNGE_RAMP($,45.000);
#42= BIDIRECTIONAL_MILLING(5.000,.T.,#43,.LEFT.,$);
#41= MILLING_MACHINE_FUNCTIONS(.T.,$,$,.F.,$,(),.T.,$,$,());
#50= MILLING_TECHNOLOGY(0.040,.TCP.,$,12.000,$,.F.,.F.,.F.,$);

#29= TAPERED_ENDMILL(#30,4,$,.F.,$,$);
#30= MILLING_TOOL_DIMENSION(20.000,$,$,$,1.500,$,$);
#39= MILLING_CUTTING_TOOL('MILL 20MM',#29,(#125),80.000,$,$);
#4= WORKPIECE('SIMPLE WORKPIECE',#6,0.010,$,$,$,(#66,#67,#68,#69));
#6= MATERIAL('ST50','STEEL',(#7));
#7= PROPERTY_PARAMETER('E=200000N/M2');
#8= SETUP('SETUP1',#71,#62,(#9));
#9= WORKPIECE_SETUP(#4,#74,$,$,());

ISO-10303-21
HEADER;
......
ENDSEC;
DATA;

}

}Sequences

Feature &
Geometry

Operation &
Technology

Tools

Workpiece

Data

Header

Fig. 11.18 ISO 14649 part program for test part for milling
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for the round hole. Finally roughing (#13) and finishing (#14) operations for the
closed pocket are executed.

“Feature and geometry” shows feature information in the STEP-NC part program,
especially closed pocket. In the part program, the bottom of the pocket is defined as
the planar pocket bottom condition (#27). The general closed profile (#28), more
especially polyline (#59), is used for the contour of the closed pocket.

Table 11.2 Process plan for the closed pocket

Closed pocket
machine parameter Bottom and side Bottom and side

rough milling finish milling
Tool Taper End mill 20.0 Taper End mill 6.0

Retract plane 30 30
ADC 4 1
RDC 3 1

Strategy bidirectional milling Contour bidirectional
Approach Plunge zigzag Plunge zigzag

Retract Plunge ramp Plunge ramp
Bottom allowance 1 0

Side allowance 1 0
Feedrate 250 250

Spindle speed 500 500
Coolant On on

Chip removal On on

Table 11.2 shows the process plan to remove the closed pocket of Fig. 11.17. In
this example, the part program for the roughing operation will be explained. Machin-
ing type is given by the bottom and side rough milling entity (#22) that has axial
depth information (4.0), radial depth information (3.0) and finishing allowance for
the wall (1.0) and bottom (1.0), the starting point and the overcut length.

The machining strategy defines the method to execute the given machining oper-
ation. The bidirectional milling entity (#42) is used in the process plan of Table 11.2.
It defines the direction of the machining, step-over direction and so on. If these values
are omitted, the CNC can decide these values autonomously. The milling technology
entity (#50) information defines machining conditions such as feed and spindle. Feed
can be defined by using feedrate or feedrate per tooth and the speed of the spindle
can be defined by using spindle or cut speed. Additional information such as the con-
current movement of spindle and feed, the override of the feed and spindle can be
defined. In this example, feed per tooth is used to define feed and cut speed is used
to define the cutting speed of the spindle. The milling machine function entity (#41)
defines the activity of the machine tool such as air pressure, coolant, chip removal
and so on. In Table 11.2, coolant and chip removal are used during machining. For
the machining tool, taper endmill (#29) is used. It defines the diameter (20.0), edge
radius (1.5), overall length (80.0) and number of cutting teeth (4).
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Information about the raw material of the part is defined by the workpiece entity in
STEP-NC. In the existing method, G-code, there is no workpiece information. Only
the operator knows the workpiece information and decides the cutting conditions by
considering that information and generates the G-code. However, STEP-NC supports
the initial and final shape of the raw workpiece, material of the workpiece, chucking
position of the workpiece and so on. In this example, the material of the workpiece
is steel named ‘ST-50’ and the initial shape of the workpiece is a block whose size is
100.0×120.0×50.0.

11.5.2 Part Programming for the Turning Operation

Figure 11.19 shows a simple part for turning operation, described in the Annex D of
ISO 14649 Part 12. Figure 11.20 shows the overall structure of the STEP-NC part
program for the test part. The full version can be found in Annex D of ISO 14649
Part 12.

110 50

40 80

x z

Workpiece
coordinate
system

x z

Outer_diameter(cylinder and cone)

revolved_flat

Fig. 11.19 ISO Three levels of ISO 14649 data model

The overall structure of the part program is similar to that for milling operations.
The differences are the machining features, machining operations, machining tools
that are used in turning. Therefore, turning feature (outer diameter), turning oper-
ation (contouring rough) and turning tool (general turning tool) are explained here
briefly.

The shape of Fig. 11.19 includes an end face (revolved flat, #10), a cylin-
der and a cone (outer diameter, #11 and #12). For the machining cylinder part
(outer diameter, #12), the contouring rough (#22) operation is used. For the machin-
ing strategy, unidirectional turning (#54) is assigned to execute contouring rough
(#22). Unidirectional turning includes length of overcut, depth of cut (3 mm),
change amount of feed, lift height (2 mm), feed direction, back path direction,
stepover direction and the feed for each direction. For the cutting condition, turn-
ing technology (#43) 0.3 mm per revolution is set as feed and 500 RPM is set as
the spindle speed in the manner of constant spindle speed. For the machine func-
tion, turning machine function (#40) defines that coolant should be used to carry out
contouring rough. For the cutting tool, general turning tool (#100) is used and the
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#29=PROJECT('TURNING EXAMPLE 1',#30,(#1),$,$,$);
#30=WORKPLAN('MAIN WORKPLAN',(#31,#32,#33,#34),$,#37,$);
#31=MACHINING_WORKINGSTEP('WS ROUGH END FACE',#63,#10,#20,$);
#32=MACHINING_WORKINGSTEP('WS FINISH END FACE',#63,#10,#21,$);
#33=TURNING_WORKINGSTEP('WS ROUGH CONTOUR',#63,(#11,#12),#22,$);
#34=TURNING_WORKINGSTEP('WS FINISH CONTOUR',#63,(#11,#12),#23,$)

#10=REVOLVED_FLAT('END FACE',#1,(#20,#21),#70,#80,0.000,#91);
#11=OUTER_DIAMETER('CONE',#1,(#22,#23),#76,#83,#93,#95);
#12=OUTER_DIAMETER('CYLINDER',#1,(#22,#23),#78,#72,#74,$);

#22=CONTOURING_ROUGH($,$,'ROUGH CONTOUR',$,$,#100,#43,#40,#56,#56,#54,0.500);
#40=TURNING_MACHINE_FUNCTIONS(.T.,$,$,(),.F.,$,$,(),$,$,$);
#43=TURNING_TECHNOLOGY($,.TCP.,#47,0.300,.F.,.F.,.F.,$);
#47=CONST_SPINDLE_SPEED(500);
#54=UNIDIRECTIONAL_TURNING($,$,(3.000),$,$,$,$,$,2.000,$,$);
#56=AP_RETRACT_ANGLE($,45.000,4.000);

#100=GENERAL_TURNING_TOOL('ROUGHING TOOL',120.0,45.0,$,$,$,#101,.LEFT.);
#101=CUTTING_EDGE_ PROPERTIES (#102,$,$,10.0,110.0,$,25.0,(),$,$
#102= MATERIAL('TIN','TIN',());
#37=SETUP('SETUP FOR TURNING EXAMPLE 1',$,#63,(#38));
#38=WORKPIECE_SETUP(#1,#64,$,$,());
#1=WORKPIECE('SIMPLE WORKPIECE',#2,0.010,$,$,$,());
#2=MATERIAL('DIN EN 100271','E 295',(#3));
#3=NUMERIC_PARAMETER('ELASTIC MODULUS',2.E11,'pa');

ISO-10303-21
HEADER;
......
ENDSEC;
DATA;

}

}Sequences

Feature &
Geometry

Operation &
Technology

Tools

Workpiece

Data

Header

Fig. 11.20 ISO 14649 part program for test part for turning

overall length and width of its holder are 120 mm and 45 mm respectively. Also,
general turning tool uses an insert which has cutting edge length (10.0 mm), side
cutting edge angle (110.0◦) and end cutting edge angle (25.0◦).

11.6 STEP-CNC System

As the new language is established, increasing attention is being paid to the devel-
opment of a new CNC, STEP-CNC (or STEP-compliant CNC), operating based on
ISO 14649. Since the new language accommodates various pieces of information
about ‘what-to-make’ (i.e., product information including 3D geometry) and ‘how-
to-make’ (process plan), STEP-CNC can undertake various intelligent functions that
cannot be performed by conventional CNC operation based on ISO 6983. In this sub-
section, the types of STEP-CNC and their architectures and related technology will
be explained.

As shown in Fig. 11.21, STEP-CNC has two types of interface bus, an external
bus and an internal bus. The external bus, noted as “STEP based New Programming
Language (ISO 14649)” in Fig. 11.21, connects CNC and the CAD/CAPP/CAM
system. The information in the STEP-NC part program is interpreted and saved in
the database according to its type e.g. CAD DB, CAPP DB, and CAM DB. The
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internal bus, noted as Soft Bus (CORBA) in Fig. 11.21, makes it possible for the
various intelligent modules on the inside of the CNC controller to communicate with
each other.

CAD kernel
CAD DB

STEP IR
AP203  AP224

CAPP kernel
CAPP DB

STEP IR ISO 13399
SP213 Part2  Part3

CAM kernel
CAM DB

Tool path

STEP-based New Programming Language(ISO 14649)

MMI
Task

Execution
Task

Planning
Task

Monitoring

Soft Bus (CORBA)

NCK
PLC

Embedded
Kernel

Configuration
Layer

Runtime
Environment

Fig. 11.21 STEP-NC interface architecture

Considering the architecture, STEP-NC technology requires various technologies
such as STEP interface technology, Autonomous machining technology, Open Ar-
chitectural Controller technology, CNC technology, and CAD/ CAM/CAPP tech-
nology, as shown in Fig. 11.22. These technologies can be classified into three
types; 1) ISO 14649 related technologies, such as STEP interface technology and
feature based CAD/CAM/CAPP technology; 2) ISO 14649 based intelligent and
autonomous technologies, such as Open-architecture Soft-NC; NCK, PLC, Motion
control, Autonomous task planning, On-line tool path generation, Feature-based exe-
cution, Task monitoring, and Emergency handling; 3) Computer-aided programming
technologies for generating STEP-NC part programs such as shopfloor programming
systems. Details about open architecture controllers and soft-NC were explained in
the previous chapter, this section shows the types and architectures of STEP-CNC.
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Fig. 11.22 STEP-NC related technologies

11.6.1 Types of STEP-CNC

Depending on how STEP-NC is implemented on the CNC, there are three types
of STEP-CNC: (1) conventional control, (2) new control, and (3) new intelligent
control, as shown in Fig. 11.23.

Type 1 simply incorporates ISO 14649 in a conventional controller via post-
processing. In this case, conventional CNC can be used without modification. Strictly
speaking, this cannot be considered as a STEP-compliant CNC as it should at least
be able to read ISO 14649 code. Type 2, the ‘New Control’, has a STEP-NC inter-
preter in it, through which the programmed workingstep is executed by the CNC
kernel with built-in toolpath generation capability. Type 2 is the basic type where
the motion is executed ‘faithfully’ based on the machining strategy and sequence as
specified by the ISO 14649 part program. In other words, it does not have intelli-
gent functions other than the toolpath generation capability. Most of the STEP-NC
prototypes developed up to the present time fall into this category.

Type 3, much more promising than the predecessors, is the ‘New Intelligent
Control’ (Fig. 11.23), in which CNC is able to perform machining tasks ‘intelli-
gently’ and ‘autonomously’ based on the comprehensive information of ISO 14649.
Some examples of intelligent functions are automatic feature recognition, automatic
collision-free toolpath generation including approach and retract motion, automatic
tool selection, automatic cutting condition selection, status monitoring and automatic
recovery, and machining status and result feedback.
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Fig. 11.23 Three types of STEP-CNC

11.6.2 Intelligent STEP-CNC Systems

The requirements for the next-generation CNC are 1) from the data-level point of
view, CAD data interface with a standard schema, internet interface, seamless infor-
mation exchange should be considered, 2) from the functional-level point of view,
intelligence including autonomy, multi-functionality, change/failure recovery, high
speed machining, and learning should be concerned, 3) from the implementation
level point of view, software-based CNC, open and modular architecture, and user
configurable structure are to be provided. If those requirements are satisfied, the next-
generation CNC can communicate with higher-level manufacturing systems bidirec-
tionally, maximize the control function of the machine tools, and be re-configured
according to user requirements and application areas.

An example of the functional architecture of the STEP-compliant intelligent CNC
(Intelligent STEP-NC) is shown in Fig. 11.24. This is composed of 1) Control mod-
ules covering various intelligent control functions, such as monitoring, decision mak-
ing, execution, and so on, 2) SFP/TPG (shopfloor programming/toolpath generation)
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modules, which are extended HMIs comprehensively covering part programming
and toolpath generation based on a STEP-NC data model, 3) Common DB mod-
ules providing comprehensive data for the SFP/TPG and control modules, 4) non-
machining modules such as Setup Manager, Inspector, and Learner.
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Fig. 11.24 A functional architecture of intelligent STEP-CNC

The control modules involve intra-task management of the CNC such as Decision
Maker, Executor, NCK/PLC, Monitor, Emergency Handler, and Inspector.

• Decision Maker: This schedules the task, selecting the next task from various
alternatives from a non-linear process plan. The non-linear process plan includes
alternative process plans, and can be represented by an AND-OR-type graph to
be explained later. One of the critical decisions is to assign the priorities between
the scheduled task and the newly invoked task by the emergency handler and the
inspector.

• Executor: This converts the task into commands and passes them to NCK/PLC.
If the task is a machining operation, it retrieves the corresponding toolpath from
the Tool-Path DB and passes it to NCK/PLC. If the task is a tool change, it finds
the tool in the tool magazine and passes it to NCK/PLC. Executor keeps track of
the commands executed by NCK/PLC for adaptive control.

• NCK/PLC: NCK interprets the toolpath commands and executes them by activat-
ing the servo mechanism, while PLC executes machinery commands, such as tool
change and workpiece loading/unloading. For free-form surface machining, NCK
is capable of NURBS interpolation in which accurate and high-speed machining
can be carried out with reduced data.

• Monitor: The entire machining status is continuously monitored by capturing in-
formation from sensor signals. Tool monitoring and emergency detection are cru-
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cial tasks. The results are sent to the emergency handler and/or the decision maker
accordingly.

• Emergency Handler: In case of an emergency, which is monitored and reported
by the monitor, the emergency handler makes a diagnosis and decides what to
do about it. The result is sent to the decision maker for the final decision and
scheduling. For example, in the case of tool breakage, the emergency handler
retracts the tool, and checks if an alternative tool is available in the tool magazine
(through Machine Resource DB). If one is available the operation is resumed with
the alternative tool, otherwise it reports to the decision maker and waits for a final
decision. The emergency handler can be thought of as a subtype of the decision
maker, specializing in dealing with emergency.

• Inspector: In-process and post-process inspections are carried out automatically
by the inspector. In either case, inspection is done on the machine tool by OMM
(on-machine measurement). The inspector generates the toolpath for the touch
probe and stores the data into the Inspection DB. Any geometrical errors between
the designed part and the machined part are found by comparing the data of the
inspection DB with that of the Machining Feature DB.

The SFP/TPG modules incorporate the CAM functions into the shopfloor pro-
gramming system based on the STEP-NC data model. These include Input Manager,
Process Planner, Toolpath Generator, and Simulator.

• Input Manager. The roles of the input manager are CAD data interface han-
dling and machining feature recognition. It translates standard CAD data (STEP,
AP203) into built-in geometric modeling kernel data, recognizes the machin-
ing features, and extracts the feature attributes required for machining. Output
is stored in the Machining Feature DB.

• Process Planner. This determines the processing sequence, operations, fixtures,
setups and cutting tools required to machine the features. The processing se-
quence is represented by a non-linear process plan so that the decision maker can
select an appropriate plan at the time of execution. Optimal cutting parameters,
machining strategies and tools for operations are determined using the Machining
Knowledge DB. For this, a knowledge-based process planning system is required.
Output is stored in the Machining Process DB.

• Tool-Path Generator. This generates toolpaths both for machining and measure-
ment. It can generate a complete path including approach, departure, and connec-
tion path between the machining or measurement paths. The generated toolpaths
are stored in the Tool-Path DB, which is accessed by NCK/PLC. As NCK/PLC is
able to interpret NURBS curves directly, the toolpath generator does not segment
the toolpath of a freeform curve into lines/arcs.

• Simulator. Prior to actual machining, it is necessary to perform a cutting simula-
tion to verify the given toolpath and to detect any possible errors. The simulator
finds undercut or gouging and tool interference by cutting simulation. In addition
to error detection in the toolpath, optimal feedrate is calculated by using the re-
quired material removal rate during the solid cutting simulation. Output is stored
in the Tool-Path DB and the Machining Process DB.
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The other functions are as follows:

• Setup Manager. This supports the part setup operation. Once the part is loaded
onto the machine, it finds the datum position by moving a touch probe using the
workpiece and fixture geometry information.

• Learner: Information captured during machining is analyzed by an expert algo-
rithm, and stored in the Machining Knowledge DB.

• Common DB modules: These DB modules are the repositories of data that are
generated, updated, and retrieved by control modules and SFP/TPG modules. Ma-
chining feature DB, machining process DB, toolpath DB, and inspection DB are
short-term databases and machine resource DB and machining knowledge DB
are long-term databases. On completion of the part machining, the short-term
database is cleared.

• Communicator. The communicator is responsible for the interactions with exter-
nal units, such as the CAD/CAM system, shopfloor control system, and human
operator:

1. When requested by the CAD/CAM system, the CNC sends the part program
in the current CNC DB.

2. When requested by the shopfloor control system, it reports the current status
including the progress of machining, and problems that occurred during ma-
chining.

3. When the execution of a certain operation is impossible due to unexpected
problems it sounds an alarm for operator attention.

Assuming that the intelligent STEP-NC presented is developed, an operational
scenario is shown in Fig. 11.25 to illustrate how it works. The part programmer (user)
designs a part to be machined as a workpiece in a CAD system supporting an AP 203
data model. Then, the user goes to a shopfloor programming (SFP) system installed
in either an offline CAM system (external SFP) or a CNC system (built-in SFP).
Then, the input manager recognizes the machining features and stores them in the
machining feature DB. For each machining feature, a process plan is specified in the
process planner module in terms of workingstep including machining operation and
strategy together with cutting tools and cutting conditions specified in the process
planner module. Considering the shape of the machining features, the user provides
an alternative sequence of workingsteps graphically. Then, the CNC generates the
toolpath for the cutter and touch probe (using its toolpath generator), which can be
shown graphically by the simulator. After verification of the toolpath, the operation
is started by pressing the cycle start button. When a tool breakage is detected, it
stops the operation and invokes the emergency handling mechanism, followed by
reporting to the decision maker. After the emergency case has been solved, when the
inspection workingstep is required, the decision maker orders the inspector to invoke
the necessary action.
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Fig. 11.25 The operation scenario in intelligent STEP-NC

11.7 Worldwide Research and Development

Due to its enormous impact STEP-NC draws keen attention from academic commu-
nities as well as major industries worldwide. They have different perspectives from
each other. This difference is well reflected in the current state of STEP-NC R&D
efforts throughout the world. In this section, we will introduce several representa-
tive researches, even though a large number of passionate endeavors are on-going
worldwide.

11.7.1 WZL-Aachen University (Germany)

Research at WZL has focused on optimizing manufacturing planning by close cou-
pling of a CAM System and CNC Controller. This is depicted in Fig. 11.26 in the
form of a CAM client on the CNC. Since the main requirement is to assure the
usability of existing machine tools and controllers, a post-processor is still neces-
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sary to translate the process information into the data format of the specific CNC.
However, even with the step of post-processing it is possible to enable interoperable
process planning with seamless bidirectional data flow on a high information level
if the post-processing of the information occurs as close to the specific CNC and as
late as possible before beginning the manufacturing operation. If each CNC has its
own, customized post-processor, then the input information can be controller inde-
pendent. Information that cannot be transferred to and from the controller with the
NC program file, can be transferred via direct software interfaces between the CAM
System and CNC (CAM–CNC Coupling). This brings the high-level information of
the CAM system to the shopfloor level and the CNC. Thus, this allows enriched
information management at the machine tool level as well as feedback of process
information to the CAM system.

all planning information
available until down (in)to

the controller

load NC program
NC start/stop
tool data
coordinate systems
current position
etc.

.

.

.

.

.

.

no program changes
on G-Code level

PDM

no programming 

shopfloor

CAD/CAD/
CAMCAM

CAMCAM

TMTM

CAQCAQ
CAMCAM
ClientClient

          PP          PP

CAMCAM
ClientClient

          PP          PP

CAMCAM
ClientClient

          PP          PP

CAMCAM
ClientClient

       PP   PP       PP   PP

Fig. 11.26 CAM–CNC coupling based on consistent data management

Such a CAM client system might take the form of an integration framework that
allows integrating software solutions of different providers (e.g. toolpath planning
functionalities, 3D simulation of the NC program, acquisition of the real geometry
of the workpiece and its consideration for toolpath planning, provision of geome-
try information for NC integrated collision avoidance systems). A possible detailed
layout of such a system and its seamless PDM integration with all other process
planning software systems in order to enable true interoperable machining based on
common and consistent data is one of the current research topics at WZL.
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11.7.2 ISW-University of Stuttgart (Germany)

The Institute for Control Engineering of Machine Tools and Manufacturing Units
(ISW) at the University of Stuttgart researches in the area of the CAD/ CAPP/ CAM/
CNC process chain. The work focuses on methodologies, data models and software
tools to utilize bidirectional information exchange between CNC and a unified man-
ufacturing process planning database capturing STEP-NC information as illustrated
in Fig. 11.27.

During the EU STEP-NC project and together with POSTECH of Korea during
the IMS/EU STEP-NC project, ISW developed a STEP-NC data model for turn-
ing. To verify the turning data model, ISW developed a Computer–Aided Planning
demonstrator for turning, “STEPturn”, and a software module to convert STEP-NC
data into the Siemens ShopTurn CNC data format. For the purpose of optimization of
machining processes, e.g. in a small-batch manufacturing environment, the feature-
based process model of STEP-NC is being utilized to structure process data acquired
in open CNCs and open servo drive controllers. Relating this information about ex-
ecuted machining workingsteps to the corresponding manufacturing features and
machining operations as well as additional context information, like the executing
machine tool, helps to build a comprehensive manufacturing knowledge database.

CAD/CAM systems

STEP-NC server

Machine tool simulation CNC Machining process

STEP-NC
database

STEP-NC

ST
EP

-N
C

Drive interface Drive interface

Fig. 11.27 Infrastructure to acquire process data
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11.7.3 POSTECH (South Korea)

The National Research Laboratory for STEP-NC Technology (NRL-SNT) at POS-
TECH has made the following achievements related to STEP-NC technology:

• Development of Korea STEP-NC: STEP-CNC system for milling
• Development of TurnSTEP: STEP-CNC system for turning
• Development of the data model for turning (ISO14649 Part 12 and 121) with

ISW-University of Stuttgart
• Suggestion and reflection on revision of the ISO14649 data model for milling
• Promotion of international and domestic seminars for STEP-NC

NRL-SNT developed two types of STEP-CNC system: Korea STEP-NC for
milling [Suh, et al., 2003 [140]] and TurnSTEP for turning [Suh, et al., 2006 [13]].
The following issues have been considered in designing the architecture of STEP-
CNC and are also technical contributions for implementation of STEP-NC.

• Full compliance with ISO14649 and STEP APs
• Suite of STEP-manufacturing
• Distributed architecture for e-manufacturing
• Extension to intelligent/autonomous CNC execution
• Feature recognition/mapping capability
• Tolerance handling capability
• Optimization of the machining sequence for the CNC controller
• Internet interfacing
• XML support
• Accommodation of conventional CNC
• Automated/interactive generation capability

Korea STEP-NC is an integrated system including CAD/CAM/CNC modules
based on the open-modular architecture. It is composed of five modules as shown
in Fig. 11.28: i) PosSFP (Shop Floor Programming), ii) PosTPG (Tool–Path Gen-
eration), iii) PosTPV (Tool–Path Viewer), iv) PosMMI (Man–Machine Interface),
and v) PosCNC. For communication between these modules CORBA is used. Korea
STEP-NC is capable of execution of STEP-NC code without G-code and for direct
interpolation of STEP-NC toolpaths using Soft-NC technology.

TurnSTEP for rotational parts fully supports ISO14649 Part 12 and 121 as a
means for verifying the data model. It is composed of three subsystems: i) CGS
(Code-Generating System), ii) CES (Code-Editing System), and iii) ACS (Au-
tonomous Control System), as illustrated in Fig. 11.29.

The three subsystems interface to the Internet together with a CAD system gener-
ating a part-geometry file, and the STEP-NC repository. CGS is used for generating
neutral (hardware independent) part programs, and CES is for customizing the neu-
tral part program for the machine tools that will be used for executing the STEP-NC
code. Finally, ACS is used for controlling the machine tools based on the hardware
converted STEP-NC code. The developed STEP-NC repository enables data sharing
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Fig. 11.28 The prototype Korea STEP-NC and the machined part
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• Input: ISO 14649 part program
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 - Interpretation of part program
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 - Generation of toolpath
 - Generation of Executable
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(Code-edit System)

• Input: ISO 14649 part program
• Output: Machined part
• Modules
 - Setup Manager
 - Intelligent Scheduler
 - Adaptive TPG
 - OMM & Quality Report
 - Remachining
 - Emergency handling
 - Monitoring/Adaptive Control
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(Autonomous Control System)

Fig. 11.29 Three subsystems of TurnSTEP

anytime, anywhere and on any platform. In addition, by expressing STEP data using
XML as a core technology of the repository, product data can be easily stored and
shared across the Web. A translator has been developed to convert STEP data in the
clear text format into XML and vice versa.

11.7.4 Ecole Polytechnic Fédérale of Lausanne (Switzerland)

STEP-NC work at the EPFL concentrated on EDM with other Swiss partners. As
well as control based on STEP-NC, design features, feature-based process planning



11.7 Worldwide Research and Development 427

and optimization methods are being developed. For manufacturing, possible feature
information from CAD may or may not be useful for manufacturing, depending on
the reasons for which they were introduced. Current work is on Malcolm Sabin’s
back-building process planning method, involving recognizing and selecting sets of
features and removing them successively until the desired stock is reached. The fea-
tures removed are recorded for organization into a ‘micro’ process plan for machin-
ing using STEP-NC. This work is also related to another on-going project, on eco-
evaluation, where it is planned to define methods for adaptive control, optimizing
ecological parameters, based on STEP-NC.

11.7.5 University of Bath (UK)

Research at the University of Bath is developing a novel universal manufacturing
platform that utilizes the STEP-NC data models and accentuates it with the function-
ality of mobile agents and manufacturing knowledge-bases. Figure 11.30 illustrates
the conceptual view for the platform where various CAx applications can exchange
information seamlessly. In addition to CAD, CAM, CAPP and CNC interfaces, busi-
ness applications such as ERP, scheduling and costing can also exchange information
with the various systems. This allows the systems to link business information to the
manufacturing data and resources.

In order to achieve full interoperability, the platform requires abstraction of re-
sources, encoding relevant knowledge in a standardized manner and communication
infrastructure to transfer data from one application to another. The STEP-NC data
model is utilized as the basis for the representation of manufacturing knowledge
contained within the platform. An XML-based structure to represent resources has
therefore been developed to support encoding of the various CAx system capabilities.
The open approach used in the development of the XML resource schema allows it to
be modified to comply with the new standards currently being developed for resource
representation.

11.7.6 NIST (USA)

Interoperability between discrete parts manufacturing equipment is a large part of
NIST’s standards work conducted by the Manufacturing Engineering Laboratory
(MEL). MEL’s Smart Machining Systems program is focusing on issues relevant
to CNC interoperability. These smart machining systems are envisioned to know and
communicate their capabilities and condition to monitor and optimize their opera-
tions autonomously, to assess the quality of their output and to learn and improve
themselves over time. The program considers “smart data” to be vital to achieving
smart machines.
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Fig. 11.30 Universal manufacturing platform architecture

The NIST Advanced Technology Program (ATP) funded a project to validate the
use of STEP-NC in manufacturing applications. This project, the Model-Driven In-
telligent Control of Manufacturing (also known as the “Super Model” project), be-
gan in 1999 with the goal of using STEP-NC and other standards to develop an open
database of all the information necessary to design and manufacture a part. While
NIST understands the value of standards-based data exchange, it is the “smart data”
component that is expected to revolutionize machining. Toward this end, NIST has
developed a dynamic optimizer that uses physics-based models of machining, cou-
pled with measurements of machine tool performance and tool characteristics, to
generate optimal speed and feed settings that reduce cycle times compared with con-
servative handbook values. The Matlab-based optimizer was recently coupled with a
STEP-NC front end that takes a process plan for turning, extracts relevant informa-
tion for optimization, runs the optimizer, and merges the optimized parameters back
into the original STEP-NC file.

11.8 Future Prospects

Research and development on STEP-Manufacturing has been actively pursued and
it has been demonstrated to work in practice both internationally and locally. At
present, an effort has been made to apply the techniques to real industrial areas.
However, truly, it is hard to realize full STEP-Manufacturing in one step due to the
time, cost and technological difficulties. For this reason, the authors suggested the
STEP-Manufacturing Roadmap more focused on the STEP-NC domain, as shown
in Table 11.3. This roadmap is composed of three steps as the specific approach
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methodology for the formalization of the STEP-Manufacturing environment. The
roadmap takes into consideration the following itemized strategies:

• Collaborative participation with many manufacturing-related companies

– Collaborative interaction with design-engineering-machining company chains,
CAD/CAM software users, CNC controller developers, CNC machine tool
users and/or builders

• Inducement toward an information-oriented and international

– Spread to information-oriented company and information exchange among
collaborating companies

– Gradual extension from local cluster to global environment and from metal
working to other industrial sectors

• Consideration of compact and economical research and development

– Practical use from conventional products to new intelligent STEP-based prod-
ucts

– Inducement of implementation from partial to whole
– Technology and service offered through Web services
– Maximum utilization of accumulated know-how from R&D organizations

Despite the short history of STEP-NC and on-going development of this standard,
a large number of research works have been carried out across the whole world. From
the perspective of the STEP-NC data model, milling and turning data models have
been published as International Standards, EDM is in the process of being intro-
duced, and other data models including the machine tool data model, inspection and
rapid prototyping are currently in progress. Simultaneously, the second edition ver-
sions of some ISO 14649 parts have been under development in order to complement
the first versions.

From the perspective of STEP-CNC systems, current research for the first type
of STEP-CNC, which simply incorporates ISO 14649 in a conventional controller
via post processing, have been carried out by the consortia that are composed of
many CAD, CAM, CNC vendors and user groups. With the development of STEP-
NC technology, the second type of STEP-CNC, having an ISO 14649 interpreter,
will replace G-code-based controllers or the first type of STEP-CNC. Finally, the
third type STEP-CNC that enables performance of ‘intelligent’ and ‘autonomous’
machining based on the comprehensive information will dominate the CNC market.
Considering the current momentum of research in STEP-NC areas, these challenges
will come true within a score of years.
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Table 11.3 STEP-Manufacturing roadmap

1 step (the beginning period) 2 step (the employment period) 3 step (the completion period)

Objective/
Benefit

STEP-Mfg infra introduction
through the minimum investment

Merit acquisition of STEP-Mfg by
STEP-Mfg settlement

e-Mfg paradigm implementation
based on STEP-Mfg

Time frame 2 year (TBA) 3~4 year (TBA) After 5 year (TBA)

Infra range Intranet (in company) Internet (in local area) Internet (international)

Information
exchange level

Hybrid
(STEP, STEP-NC, G-code)

Partial STEP-Mfg
(STEP AP203, ISO14649)

Full STEP-Mfg
(STEP APs, ISO14649, ...)

Im
pl

em
en

tat
io

n
lev

el

CNC

CAD/
CAM

Type 1 (conventional control)
via post-processing

Legacy software with
STEP-NC interface

(ST-Plan, ST-Machine)

Type 2 (new control)
via new & w/STEP-NC interpreter

(Siemens)

STEP & STEP-NC interpreter,
STEP-NC converter

(G-code → STEP-NC)

STEP & STEP-NC based
CAPP/CAM

(PosSFP, TurnSTEP-CGS)

Type 3 (intelligent control)
via new & intelligent controller

(TurnSTEP-ACS)

CAPP/CAM for
intelligent STEP-Mfg

(TurnSTEP-CES)

Re
qu

ire
d 

tec
hn

ol
og

y STEP-x
interface

Web
service

DB build-up

STEP-NC interpreter,
Post-processor for Type 1

(STEP-NC → G-code)
STEP, STEP-NC interpreter

Web-service build-up in server side
(settlement of web-service range)

STEP-Mfg application build-up
in client side

Client-Server harmonization and
improvement

Local DB Global DB
(STEP-Mfg repository)

Global DB
(STEP-Mfg repository)

Ro
le 

di
vi

sio
n

Company

R&D center

Government

Intranet infra in company,
STEP-Mfg introduction

STEP-Mfg component technology
research and spread

STEP-Mfg introduction support,
local IT infra build-up business

STEP-Mfg infra employment

Component technology development,
Conformance verification

Infra technology employment business,
Local IT infra build-up business

e-Mfg infra employment

Verification of reliability,
conformance, interoperability

Commercial use business,
certification business,

IT infra enlargement (nation)



Appendix A
Turning and Milling G-code System

A.1 Turning

Table A.1 G-codes for turning

G- Grp. Function Format
code
G00 1 Rapid traverse [X /U ][Y /V ][Z /W ]
G01 1 Linear interpolation [X /U ][Y /V ][Z /W ]
G02 1 Circular interpolation [X /U ][Y /V ][Z /W ]

in clockwise direction [R /I J K ]
G03 1 Circular interpolation [X /U ][Y /V ][Z /W ]

in counter-clockwise [R /I K ]
direction

G04 0 Dwell [X /U /P ]
G10 0 Programmable data P [X /U ][Y /V ][Z /W ]

input [R /C ]Q
G17 16 Selecting XY plane
G18 16 Selecting ZX plane
G19 16 Selecting YZ plane
G20 6 Inch (or SI) system
G21 6 Metric system
G22 9 Stored stroke check func- [X /U ][Y /V ][Z /W ]

tion on I J K
G23 9 Stored stroke check func-

tion off
G25 8 Spindle vibration moni-

toring off
G26 8 Spindle vibration moni-

toring on
G27 0 Moving to origin and [X /U ][Y /V ][Z /W ]

check

431
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G28 0 Moving to origin [X /U ][Y /V ][Z /W ]
G29 0 Moving from origin [X /U ][Y /V ][Z /W ]
G30 0 Moving to 234 origin P [X /U ][Y /V ][Z /W ]
G31 0 Skip P [X /U ][Y /V ][Z /W ]
G32 1 Thread cutting [X /U ][Y /V ][Z /W ]
G34 1 Variable lead thread [X /U ][Y /V ][Z /W ]K

cutting
G36 0 Tool radius compen- [X /U ][Y /V ][Z /W ]

sation on in X-direction
G37 0 Tool radius compen- [X /U ][Y /V ][Z /W ]

sation on in Z-direction
G40 7 Tool radius compen-

sation off
G41 7 Tool radius compen-

sation on left side
G42 7 Tool radius compen-

sation on right side
G50 0 Setting up work coord- [X /U ][Y /V ][Z /W ]

inate system
G52 0 Setting up local coord- [X /U ][Y /V ][Z /W ]

inate system
G53 0 Setting up machine coord- [X /U ][Y /V ][Z /W ]

inate system
G54 14 Selecting work coordinate [X /U ][Y /V ][Z /W ]

system
G55 14 Selecting work coordinate [X /U ][Y /V ][Z /W ]

system
G56 14 Selecting work coordinate [X /U ][Y /V ][Z /W ]

system
G57 14 Selecting work coordinate [X /U ][Y /V ][Z /W ]

system
G58 14 Selecting work coordinate [X /U ][Y /V ][Z /W ]

system
G59 14 Selecting work coordinate [X /U ][Y /V ][Z /W ]

system
G65 0 Calling macro P L A B C D E F H M

Q R S T U V W X Y Z
I I ..J J ..K K ..

G66 12 Calling macro modal P L A B C D E F H M
Q R S T U V W X Y Z
I I ..J J ..K K ..

G67 12 Macro call off
G68 4 Mirror image on
G69 4 Mirror image off
G70 0 Finish cut cycle on P Q
G71 0 Outer diameter/Internal U R

diameter turning cycle P Q U W
G72 0 Rough facing cycle W R

P Q U W

Table A1 (continued)
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G73 0 Patten repeating cycle U W R
P Q U W

G74 0 End face peck drilling R
cycle [X /U ][Y /V ][Z /W ]

P Q R
G75 0 Drilling cycle on external R

and internal side [X /U ][Y /V ][Z /W ]
P Q R

G76 0 Complex threading cycle P Q R
[X /U ][Y /V ][Z /W ]
P Q R

G80 10 Canned cycle cancel
G83 10 Cycle for face drilling [X /U ][Y /V ][Z /W ]

for drilling R Q K
G84 10 Cycle for face tapping [X /U ][Y /V ][Z /W ]

R P K
G85 10 Cycle for face boring [X /U ][Y /V ][Z /W ]

R Q K
G87 10 Cycle for side boring [X /U ][Y /V ][Z /W ]

R Q K
G88 10 Cycle for side tapping [X /U ][Y /V ][Z /W ]

R P K
G89 10 Cycle for side boring [X /U ][Y /V ][Z /W ]R K
G90 1 Outer diameter/internal [X /U ][Y /V ][Z /W ]R

diameter cutting cycle
G92 1 Threading cycle [X /U ][Y /V ][Z /W ]R
G94 1 End face turning cycle [X /U ][Y /V ][Z /W ]R
G96 2 Constant surface speed

control
G97 2 Constant surface speed

control cancel
G98 5 Feed per minute
G99 5 Feed per revolution
G107 22 Cylindrical interpolation C
G112 20 Polar coordinate interp-

olation
G113 20 Polar coordinate interp-

olation cancel

Table A1 (continued)
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A.2 Milling

Table A.2 G-codes for milling

G- Grp. Meaning Data elements
code
G00 1 Rapid traverse X Y Z
G01 1 Linear interpolation X Y Z
G02 1 Circular interpolation in X Y Z [R /I J K ]

clockwise direction
G03 1 Circular interpolation in X Y Z [R /I J K ]

counter clockwise direction
G04 0 Dwell [X /P ]
G10 0 Programmable data input L P R
G15 17 Polar coordinate command
G16 17 Polar coordinate command

cancel
G17 16 Selecting XY plane
G18 16 Selecting ZX plane
G19 16 Selecting YZ plane
G20 6 Input in inches
G21 6 Input in mm
G22 9 Stored stroke check X Y Z I J K

function on
G23 9 Stored stroke check

function off
G27 0 Reference position X Y Z

return check
G28 0 Automatic return to X Y Z

reference position
G29 0 Movement from refer- X Y Z

ence position
G30 0 2nd, 3rd, and 4th P X Y Z

reference position return
G31 0 Skip P X Y Z
G33 1 Threading X Y Z
G39 0 Tool radius compensation: [X Y Z /I J K ]

corner circular
interpolation

G40 7 Tool radius compensation
off

G41 7 Tool radius compensation
on in left side

G42 7 Tool radius compensation
on in right side

G43 13 Tool length compensation + X Y Z H
G44 13 Tool length compensation – X Y Z H
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G49 13 Tool length compensation
off

G50 11 Scaling off
G51 11 Scaling on X Y Z [P /I J K]
G52 0 Setting local coordinate X Y Z

system
G53 0 Setting machine corrdinate X Y Z

system setting
G54 14 Selecting work coordinate X Y Z

system
G55 14 Selecting work coordinate X Y Z

system
G56 14 Selecting work coordinate X Y Z

system
G57 14 Selecting work coordinate X Y Z

system
G58 14 Selecting work coordinate X Y Z

system
G59 14 Selecting work coordinate X Y Z

system
G61 15 Exact stop mode on
G62 15 Automatic corner override

mode on
G63 15 Tapping mode
G64 15 Cutting mode
G65 0 Macro call P L A B C D E F H M

Q R S T U V W X Y Z
I I ..J J ..K K ..

G66 12 Macro modal call P L A B C D E F H M
Q R S T U V W X Y Z
I I ..J J ..K K ..

G67 12 Macro modal call cancel
G68 18 Coordinate system rot. X Y Z R
G69 18 Coordinate system

rotation cancel
G73 10 Peck drilling cycle X Y Z R Q K
G74 10 Left-handed tapping X Y Z R P K

cycle
G76 10 Fine boring cycle X Y Z R Q K
G80 10 Canned cycle cancel
G81 10 Drilling cycle or spot X Y Z R K

boring cycle
G82 10 Drilling cycle or X Y Z R P K

counter boring cycle
with dwell

G83 10 Peck drilling cycle X Y Z R Q K
G84 10 Tapping cycle X Y Z R P K
G85 10 Boring cycle X Y Z R K

Table A2 (continued)
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10 Boring cycle X Y Z R K
G87 10 Back boring cycle X Y Z R Q K
G88 10 Boring cycle with X Y Z R P K

dwell
G89 10 Boring cycle with dwell X Y Z R P K
G90 3 Absolute programming
G91 3 Incremental programming
G92 0 Setting for workpiece X Y Z

coordinate system
G94 5 Feed per minute
G95 5 Feed per revolution
G96 2 Constant surface speed ctl.
G97 2 Constant surface speed

control cancel
G98 19 Canned cycle: return

to initial level
G99 19 Canned cycle: return

to R point level
G107 22 Cylindrical interpolation C
G112 20 Polar coordinate

interpolation mode on
G113 20 Polar coordinate

interpolation mode off
G84.2 10 Rigid tapping cycle X Y Z R P K F
G84.3 10 Left-handed rigid X Y Z R P K F

tapping cycle

G86
Table A2 (continued)
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A.3 Classification of G-code Groups

The group of G codes can be divided into two groups; one-shot group and modal group. The modal
group consists of a variety of groups. ‘One-shot group’ means the set of G-codes that has an influ-
ence on a single block. Unlike one-shot G-codes, the G-codes in the modal group continue to have
an influence on the next blocks until the cancel command is called.

Table A.3 G-code grouping

Group Command
0 One-shot command
1 Feed command
2 Constant surface speed command
3 Absolute/Incremental programming command
4 Mirror image command
5 Feed unit selection command
6 Programming unit selection command
7 Tool radius compensation command
8 Spindle vibration detection command
9 Stroke limit input command

10 Cycle code command
11 Scaling command
12 Macro call command
13 Tool length compensation command
14 Work coordinate system selection command
15 Cutting mode command
16 Plane selection command
17 Polar coordinate command
18 Coordinate system rotation command
19 Return position setting command for drilling cycle
20 Polar coordinate system command
21 High-speed machining command
22 Cylindrical interpolation command
23 Skip command

*Note: the group number can vary depending on the CNC makers and is not fixed.
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G84.3, 54
G85, 54
G86, 54
G87, 54
G88, 54
G89, 54
G90, 41, 43, 45, 54
G91, 41, 43, 45
G92, 54
G94, 54
G96, 53
G97, 53
G98, 54
G99, 54
G&M code, 397
G&M code – difficult traceability, 398
G&M code – information loss, 397
G&M code – lack of interoperability, 398

G&M code – non-compatibility, 398
G&M-code interpreter, 62
gain – derivative, 164
gain – proportional, 163
gain – tuning, 166–168
gain – tuning automatic, 168, 169
gain – tuning Ziegler–Nichols, 167
Giddings and Lewis, 8
GPMC, 29
graphic representation, 234

hard real-time system, 319
hardware interpolator, 70
hardwired NC, 7
helical interpolation, 45
hierarchical structure, 273
hybrid loop, 19

I control, 162
ICS, 396
IEC1131, 241–245, 247
IEC1131-3, 27, 241–243, 247
IEC1131-3 PLC languages, 246
IEC1131-3 software model, 243
IKF, 175
improved Euler algorithm, 92, 93
improved Euler method, 96
improved Tustin algorithm, 95, 96, 195
IMS, 399
incremental-type encoder, 12
induction-type AC servo motor, 10
induction-type servo motor, 11
input unit, 230, 231
inspection, 4
instruction list – IL, 247
instruction list –IL, 246
intelligent and autonomous technologies, 415
intelligent STEP-CNC system, 418
inter-module communication, 371
inter-process communication, 323, 337, 338
inter-task communication, 381
InterBus-S, 22
interchangeability, 391
interference space angle, 307
interlock function, 237
internal block memory, 64
interoperability, 391
interpolation - sampled data, 77
interpolation errors, 77
interpolation functions, 42
interpolator, 24, 69–79, 81–106, 188
interpolator – hardware, 70–75
interpolator – implementation, 188
interpolator – input/output, 196
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interpolator – software, 75–79, 81–90, 92–106
interpretative method, 232
interpreter, 24, 33
interpreter – execution, 191
interpreter – input/output, 192
interpreter – structure, 188
introduction to NC systems, 3
inverse compensation filter, 175
IPC, 323, 337, 338
ISO 10303, 399
ISO 14649, 396, 399
ISO 6983, 397
ISR, 323
ISW–Stuttgart, 424

Jacquard, 8
jig and fixture, 4

Kearney and Tracker, 8
kernel layer, 275, 276
key performance indices, 340

ladder diagram – LD, 234, 235, 246, 247, 253
language-type programming, 279, 280
latency time, 378
linear interpolation, 73
linear movement guide, 15
linear type acc/dec control, 112
linear type acc/dec pulse profile, 111
linear-circular overlap, 141, 142
LINUX, 356
LM guide, 15
loader, 27
local coordinate system, 40
look ahead, 57, 145–155
look ahead algorithm, 147
look ahead function, 49
look ahead module, 213
look-ahead module – functions, 214
look-ahead module – implementation, 213
look-ahead module – input/output, 213
loop cycle time, 361
loop driver mechanism, 366
loosely coupled type, 345
LSI, 7

M address, 37
M-code, 238, 397, 398
M02, 50
M19, 54
M30, 50, 53
machine coordinate system, 40
machine lock, 57
machine tool, 3

machine tool PLC programming, 235
machines – cutting, 3, 4
machines – EDM, 3
machines – embroidery, 4
machines – milling, 3
machines – mother, 3
machines – non-cutting, 3
machines – press, 3
machines – turning, 3
machines – woodworking, 4
machining center sequence flow, 240
machining cycle for arbitrary shape, 306
machining error, 121–124, 126
machining feature, 405, 406
machining geometry definition, 299
machining operation, 405, 406
machining operation cycle, 296
machining strategy, 290
machining strategy data, 301–303, 305
machining tool, 405
macro executor, 63
main program, 39
manual programming, 278
mapping – functions, 226
mapping module, 225
mapping module – input/output, 225
material removal rate, 420
maximum allowable acceleration, 144
maximum allowable error, 101
Mazatrol conversational system, 289
memory manager, 322
message system, 338
method for specifying part shape, 295
milling cycle, 298
milling machines, 3
MMC, 33, 34
MMI, 21, 22, 28, 29, 271–286, 288–311, 313
MMI – monitoring and alarm functions, 23
MMI – operation functions, 22
MMI – parameter setting functions, 23
MMI – program editing functions, 23
MMI – service and utility functions, 23
MMI function, 22, 271
MMI unit, 22
mnemonic, 234, 253
modal code, 37
modularity, 391
module – function, 360, 403
monotonic scheduling, 361
mother machines, 3
moving average method, 97
MPG, 273
MTB, 387
multi-processing hardware, 344
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multi-processing system, 317
multi-programming system, 317
mutual exclusion, 335

NC, 7
NC machine tools – history, 7
NC machines, 3, 4
NC systems, 4
NCK, 21, 22, 24, 26–29, 33, 34, 109, 159,

187–226
NCK function, 23
NCK unit, 24
NIST–USA, 427
non-causal FIR, 176, 177
non-causal FIR filter, 177
non-cutting machines, 3
non-cyclic task, 357
non-pre-emption scheduler, 327
normal block, 130
numerical control kernel, 21, 22, 24, 26–29,

109, 159, 187–226
NURBS, 59–61, 99–101, 103, 105
NURBS – interpolation, 59, 98, 99, 102
NURBS – interpolation algorithm, 101
NURBS – surface machining, 61

OAC, 30
offline tasks, 4
offset cancel mode, 51
offset mode, 51
on-machine measurement, 420
online tasks, 4
open CNC system, 387, 389
open environment common interface controller,

392
open environment controller, 392
open loop, 19
open MMI, 392
open modular architecture controller, 392
open system interface, 375
operating system, 317
operating system configuration, 347
operation sequence control, 305
or – OR, 262
or not – ORN, 263
or stack – ORS, 267
oriented geometry method, 300
OS layer, 275, 277
output unit, 230
overlap between a linear and a circular profile,

141

P control, 162, 163
P controller, 161

painting, 3
parallel programming, 320
parser, 62
Parsons, 8
part program, 34–37, 39–42
part program for the milling operation, 411
part programming, 410
part programming for the turning operation,

414
partially open CNC, 392
path generator, 63
PC NC, 353
PC-based MMI, 275
performance – key indices, 340
PI control, 164
PI controller, 161
PID, 157, 162–166
PID controller, 162, 164–166
PID controller for the discrete time domain,

164
PLC, 21, 22, 24, 25, 27–29, 229–250, 253–269,

284
PLC – Executer, 27
PLC – loader, 27
PLC – program tasks, 364
PLC –programmer, 27
PLC compiler, 233
PLC configuration elements, 248
PLC element, 230
PLC function, 25
PLC program executor, 248, 362
PLC program interpolator, 233
PLC programmer, 250
PLC programming, 234, 238
PLC programming signal definition, 239
PLC system, 249
PLC system functions, 240, 249
PLC unit, 27
PMSM, 8
point-to-point control, 69, 160, 161
portability, 241, 391
position control, 160, 161
position control loop, 159
position controller, 24, 157, 208
position controller – functions, 209
position controller – implementation, 208
position controller – input/output, 209
position controller – verification, 209
position error, 160
post-line tasks, 4
post-processing, 398
Postech–Korea, 425
Pratt and Whitney, 8
pre-emption scheduler, 326
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pre-emptive multi-tasking, 361
press machines, 3
priority, 381
priority scheduling, 327, 365
process coordinator, 322
process creation, 324
process management, 323
process manager, 322
process planning, 4, 278
process scheduling, 325
process state transition, 324
process synchronization, 330
process termination, 324
Profi-Bus, 22
PROFIBUS, 375
profile machining cycle, 297
program executor, 250
program structure, 35
program verification, 56
programmable logic control, 229–250,

253–269, 284
programming – automatic, 278, 280
programming – conversational, 279
programming – language-type, 279, 280
programming – manual, 278
programming – parallel, 320
programming – real-time, 320
programming – sequential, 320
programming language, 232, 234, 242, 244,

245
programming method comparison, 284
programming methods, 299, 300
programming model, 244
programming procedure, 292
proportional control, 162, 163
proportional gain, 163
punch press, 9

radial error, 90
rate monotonic, 328
read – RD, 256
read not – RDN, 257
read not stack – RDNS, 265
read stack – RDS, 264
real time extension, 356, 378
real-time control system, 28
real-time OS, 315, 316, 318, 320, 322, 325,

326, 329, 332, 333, 335, 339, 341–346,
348–351

real-time OS – structure, 321
real-time programming, 320
reference pulse interpolator, 76, 86
reference pulse method, 78
reference word interpolation, 90

reference word interpolator, 76, 87, 88
reference word interpolator for circles, 88
reference word interpolator for lines, 87
relay gain tuning, 168
relay method, 168
remaining pulse, 195
request/answer method, 369
resolver, 14
resource protection, 334
resources, 334
resources – system, 334
reusability, 391
ring buffer, 188, 338, 377
ring menu structure, 273
robots, 3
rough input, 196
rough interpolator, 193, 222
rough interpolator – circular interpolation, 195
rough interpolator – functions, 223
rough interpolator – implementation, 193, 222
rough interpolator – input/output, 222
rough interpolator – linear interpolation, 193
rough output, 198
RS 274, 397
RT LINUX, 356
RTOS, 315, 316, 318, 320, 322, 325, 326, 329,

332, 333, 335, 339, 341–346, 348–351
RTOS kernel, 321

S-code, 53, 238
S-shape type acc/dec control, 114
S-shape type acc/dec pulse profile, 111
Sabin, 427
sampled data interpolation, 77, 86, 96
scalability, 391
scaling function, 41
scheduling, 327, 328
scheduling – event-driven, 328
scheduling – first-come, first-served, 327
scheduling – fixed sample time, 328
scheduling – priority, 327
scheduling – time-slice, 327
self-waking thread, 369
semaphore, 330, 365
semaphore shuffling time, 341
semi-closed loop, 18
sequence of part programming, 278
sequential programming, 320
SERCOS, 22, 389
servo, 8, 10
servo controller, 158, 159
servo driving mechanism, 8
servo motor, 8, 10
SFC, 241, 245
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SFP, 6, 421
shared memory, 337, 376, 383
shop floor programming, 415, 421
shopfloor programming, 6
short block, 130
Siemens 840C, 350
Siemens 840D, 350
signal, 331
simple fixed cycle, 305
single block, 57
SISO, 162
skip function, 56
soft bus, 30, 416
soft PLC, 247–249
soft real-time system, 319
Soft-NC, 30, 248, 353, 355, 357, 359, 362–364,

366–369, 372–377, 388, 392, 393, 416
software model, 242
softwired NC, 7
SOP, 284, 285
speed control loop, 159
speed feedforward controller, 177
speed profile, 129
speed profile generation, 129–132
speed sensor, 15
speed within block, 151
spindle, 9
spindle function, 53
spindle motor, 9
spindle orientation function, 53
spindle position function, 53
spline interpolation, 47
stack register, 254
stairs approximation, 77, 79, 82, 83
stairs approximation algorithm, 78
stairs approximation interpolator, 79
standard bus type, 344
standard communication protocol, 22
standard geometry method, 300
standardization, 241, 391
start-up mode, 50
statement list representation, 234
static priority scheduling, 328
STEP, 398, 399
STEP compliant CNC, 397
STEP manufacturing, 399
step response method, 167
STEP-CNC, 397, 415, 417
STEP-NC, 395–430
STEP-NC data model, 396
STEP-NC technology, 397
structure of a real-time OS, 321
structure of MMI system, 275
structured text – ST, 246, 247

subprogram, 39, 40
symbolic conversational system, 280
symmetry, 42
synchronous-type servo motor, 10, 11
system call, 321
system hardware architecture, 344
system resources, 334
system response, 361, 365

T-code, 238
tacho generator, 15
tapping machine, 9
task dispatch latency time, 341
task priority, 381
task scheduling, 28
task scheduling – priority, 28
task switching time, 340
task synchronization, 331, 365, 378
Taylor algorithm, 93, 96
Taylor method, 77
threading, 50
time sharing system, 317
time-slice scheduling, 327
timer, 235
timer handler, 377
tool database, 301
tool function, 50
tool length compensation function, 51
tool offset database, 301
tool radius compensation, 50
tool sequence database, 301
torque feedforward controller, 178
tracking control, 160, 161
trajectory error, 160
turning fixed cycle, 305
turning machines, 3
Tustin algorithm, 94–96
Tustin algorithm – improved, 95
Tustin method, 77
type of STEP-CNC, 417

ultimate sensitivity method, 167
United States Air Force, 8
user input, 299
user programming languages, 245

virtual mode, 355
VME bus, 349

Weck, 175
welding, 3
woodworking machines, 4
WOP, 6, 284
workingstep, 405
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workpiece coordinate system, 40
workplan, 405
workshop oriented programming, 6, 284
write – WR, 258
write not – WRN, 259
WZL–Aachen, 422

Yasnac, 234

zero-phase error-tracking control, 174, 175
Ziegler–Nichols method, 166, 167
ZPETC, 174, 175
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